Cambridge Tracts in Mathematics
- and Mathematical Physics

GENERAL EDITORS

G. H, HARDY, M.A., F.R.8.
E. CUNNINGHAM, M.A.

>
oSy
NO. 6 . /’&\0
N\¢
ALGEBRAIC EQUATIO/J}\S:S}
£
N’
www.dbrg\éﬁb};\;‘arynrg_m
N\
N
O
€>\“’\
o
o?
N
%\Q
AN
)




O

RS

Cambridge University Press (*}%’
Tetter Lane, Tondon ,(b
\

New Fork ,Q
Bombay, Caleutta, Madra \\
Toronlo é
Macmillan ‘\(2}
TorcySz
Maruzen C y, Ltd
AN

www.dbraulibrary in

/\AH righte reserved



ALGEBRAIC EQUATIONS

BY
G. B. MATHEWS, M.A, F.R.S, LLD.

REVISED BY
W. E. H. BERWICK, Sc.D. &

Formerly Fellow of Clare College, Professor of
Mathematics in the University College of
North Wales, Bangor (Y

~a
<A} > ]
NN
N
\Y;

#*7
.\.{”‘x\v
% N
L

\
X
A

N
wiww.dbraulibrary®erg. i
\M‘\?x‘g_m

\3§ ]

CAMBRIDGE

AT THE UNIVERSITY PRESS
1930



&
O
©
First Edition 1907 (b{‘s’

Second Edition 1915

ZONN
Third Bdition 19&\‘0
4
&

www.dbra uli]@r 2.in

N
«©

PRINTED IN GREAT BREITATY



PREFACE

HIS tract is intended to give an account of the theory of equations
according to the ideas of Galois. The conspicuous merit of this
method is that it analyses, so far as exact algebraical processes permit,
the set of roots possessed by any given numerical equation. To
appreciate it properly it s necessary to bear constantly in mind the
difference between equalities in value and identities or equivalences in
form; I hope that this has been made sufficiently clear in the oz
The method of Abel has not been discussed, becanse it is neitlier 50
clear nor so precise as that of Galols, and the space thus;gzi‘ined has
heen filled up with oxamples and illustrations, & )

More than o any other treatise, I feel 1ndcbted_ to Professor
H. Weber's invaluable Algebra, where studengs, who arc interested
in the arithmetical branch of the subject“ﬁ]il find & discussion of
varions types of equations, which, for Jack’of space, I have been
compelled to omit. Ao

I am obliged \m\lhbMQmﬁ-any@@g%student of the University
College of North Wales, for helping me hy verifying some lcmg cal-
culations which had to be made in connexion with Art.

\< v G. B. M.

BaNdOR,
August, ¢ 1‘9\37
n\ .\“
O
Ncw@.?sha,t 2 reprint has been called for, I have taken the opportunity
of, imiséx‘ting the condition that a general quintic may be metacyclic in
Sbl;ue;‘i’:‘lald of itg coefficients. The discovery and calenlation of it are

due to my eolleague, Mr W. E. H, Barwick.
3. B. M.

Bawaog,
July, 1915,



PREFACE TO THIRD EDITION

N this edition of Dr Mathews’ tract I have adjusted an crror in $51.,
I An account of the resolvents of an irreducible sextic has also bee:\
included in §§54-59. For this I have drawn freely on & recent pa &}m
the Proceedings of the London Mathematical Socict: fy and am m@e ted
to the Couneil for permission to make use of it. A few arIdx{tﬂgal notes

and references have also been added. &
\ . B H. B,
Barcog, ~\
KNovember, 1029, \\"’
/
{’\./
Nt
‘\,‘«
t\«
WWW dbrauhbna);y org.in
<
2 &}
\ Q
w\.)
A\
O
A
/\\../
B
"\ o 4



)
SO

CONTENTS N
CHAP, R 3\ PAGE
I Garomaray Groues awND BEsonvenes | \{Q . 1
IL  Cyonroay Equarons . . . (2>\> . . 30
T

III.  Apmiiaw Equamows .
IV, Mwracvenie Equarions : QQIQ} AND SEXTIO

Equations . \’g}’ o 5
wwwiidbraulibrary org.in
V. Sowurow By STaxDARD HoRME |, . 61
~
Nores anp REFERB@ES v .« . 68

.'\Q
g\
6@
>
\O
,\3&,
O
Q



CHAPTER 1

GALOISIAN GROUPS AND RESOLVENTS O\

{ N\

1. Suprose that ¢, ¢, ... 6, Torm a set of asgigned a-lgéb}aic

quantities, and that R N
S@)=a"+e,a" ¢ ..t a2+ ...+ o, \\
If we can find another set of algebraic quantitiesim s, ... #, such
that RN
Sg=—e;, Zammi=ey, ..., mlxg.q\‘:g}=(~)“cﬂ......(l),
we shall have identically
F (@)= (2~ o) (@ —a) . (w— ).

Under these circumstances (suppcrsmg that the algebra we are

using is the ordinary onglrw.dbr auj[braly org.in
L#=0
for @=a1, @, ... & and for fovother values of 2.

"Thus every solution ‘(1) leads to the complete solution of the
equation f (:e:) 0. Conv{hsely the complete solution of ' (2)=0 in the
form z=¢, &, ... & leads to the camplete solution of (1), considered
a3 & system of s:muithneoub equatlona, in the form .

&yy gy ens éag fb, f
where £ayy % L represents, in turn, every permutation of
El; &ay - ég

If (the' values &, &, ... &, are all distinct, /(#) =0 has no multiple
rotsyand the solutions of the simultaneons equations are all digtinet,
and are #! in number.

If / (#) = 0 has multiple roots, its solution may be made to depend
upon an equation without multiple roots. Suppose, for example, that
S() has a root r of multiplicity «; then the first derived funetion
J1(@), that is to say df/da, has a root » of multiplicity (e —1), Hence
if ¢ =dv{/ £), the highest cowmon fuctor of  and A, the equation

M, ]



2 GROUPS AND RESOLVENTS [cH. I

flé=0 has coefficients which are rational fauctions of ¢, €, ... oy,
and its Toots ave the distinet roots of #(), cach cecurriug only once.
Morsover, if f; = d' f/da', we can, by finding dv (A, /o), dv (f5, /5) aud
30 on, determine by rational operations the exact multiplicity of any
repeated voot of =0 : hence the complete solution of f/é =0 leads to
that of £=0. In all that follows it will be assumed that f has no
multiple roots.

2. It has been proved in various ways that the roots of f{z)=0
actually exist; that is to say, if real or complex valnes be assigned, at
pleasure, to the coeflicients, then shere are exactly # determinate real
or complex nuwmbers &, 2, ... 2, such that O

f(m):ﬂ(w-—m;) X \:\
forallvalues of 2. Another theorem which will be assumed @renghout
is that every rational symmetrie function of the roots can ‘¥gexpressed
as & rational function of the ccelficients, &)

3. What gives special interest to the subjectin>hand is that the
actnal determination of the roots of a given{euation is a problem
which differs in complexity according to fhe assumptions made with
regard to the coefficients, and the value ¢f'al Thus, if n <3, and the
coefficients are left atbitrary, it is pessible to construct an explicit
algebraic function Sf ‘t}}% Egeﬂi%%}s&:ﬁg%g%is & oot of the egnation.
For n> 4, this is 6 Tonger the cagg; & fact first proved by Abel, who
alsp perceived the real reasor Yor the Hmitation, namely, the speeial
properties of the group’inrermutations of n different things when
n<5. N\

When the coeffigidnts are numerically given, the rational roots, if
any exist, can bg found by trial, and the valnes of the irrational ones
can be found byapprozimation. With these processes of approzimation,
however, w¢ shall not be concerned ; our main problem is, in fact, the
follo\vigg:\\"

Gmm @ particular eguation with numerical cosfficients, i is re-
gzsjréxi to find the simplest sot of drrational quantities such that all the

Neodis of the given equation can be expressuld as finits rational Junctions,
in an explicit form, of the set of irvationnls. What is to be understood
by the simplest set of auxiliary irrationals will appear as we preceed.

4%. Before entering upon the general theory, it will be useful to
consider the case of & cubic equation with arbitrary coeflicients, and
roots o, 3,y Since the value of a+ 8+ ¥ is known, it will be sufficient
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if we can find the values of two other independent linear functions of
the roots. If we take an arbitrary linear fenction a + I8 + vy, this will,
in general, assume six values by the permutation of «, &, v: these
values will be the roots of an equation

# Iyt =0,

the coefficients of which are rational in Z, m and known quantities. Let
us 1y to make this & quadratic in g% Then if w is & complex cube
root of unity, there will be six roots of the form

2 )
h, W, WY, ¥ Wi, 0.

N

Assuming, as an identity independent of e, 8, ¥, < Oy
a+if+my=w(f+ly+ma), O
we have /= w, m = 50 that we obtain a function A ™
1= a+of oy, m'\'\.’
the values of which, when a, 8, y are interchanged, bacome
¥= o+ off + oy, :.\\j

= a1 =gl
Yamwa+ oS +y= ':”y;”}
y5=una+ﬁ+w9-;/,;w§f2,
Yo=vfa + f + Wy w'yy.

W gﬁt‘aulibral‘y,org,jn

Consequently
97 g = (ot ofRoly ) 1 (et Bt ay)s 4,
a gquantity symmetrical ii'n;\a, B, v, and therefore rational in the
coefficients of the given eubic; in fact,
A =238 —:-:32::28 + 1208y = — 3¢ + 910, — 270,
Similarly ) 99 = Se? — Sof = ¢? ~ 3¢, = B,
ancther ratiogal function of the coefhicients: so that g 27 are the
roots of bhe tational equation

~

Qe y-Ayt+ B=0.
7\
Q A+ J(AT— 4B}
N et 6= { AL _}

with a fixed dstermination of the radicals involved. Then we may
put

a+ 5 +y=—e,

a-+ uJB - rus'y.': 5,

o+t mzﬁ + wy = B;'B,
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and hence
Sa=—+0+Blf=—c+ 0+
B=—0+ o +uBfl=...,
8y=—6,+ol+’Bff=....
By giving 6 all its six values, we obiain all the six permutations of

a, f, Y-
Tt witi be noticed that the success of this method depends on finding
a power of & linear function of the roats which is a two-valued function

A J(A? - 45
—T

6

of the coefficients ; this has been done with the help of an auxilinay(

number w which is a root of the rational quadratic w*+w+1=0.

In a similar way for the general quartic K N
(a~B+y-3F A
is a three-valned function of the coefficients, and may }p é’x‘p]_ioitly
found by means of an auxiliary rational cubic ; after this“the solution

of the guartic may be completed.

5, If, after the manner of Lagrange, we tr}f:fh\o “extend this process
to & quintie, we take ¢ a complex fifth ruotbof unity, and form the
rational equation satisfied by

(2, + eary + fy +;é“‘@ + el )t
The degree of this,iz-24] el tbiggIeriiBpecial cases that it can be
golved in & manner similar to that which is applicable in the foregoing
examples. Thus the method"breaks down; at the same time, a

generalisation of the progéss) due to Galois, is of the highest importance
in the whole of the théehr.

6. Galois ke 0y by aongidering the rational eguation satisfied by
the most general hinear function of the roots.  Let wy, w,, «.. w, hc a set
of absollutglgzundetermined symbols, subject merely to the ordinary
algebraiitiawg of combination ; and for the sake of brevity let nt =p.
If we, it

) .\'. g =
~O T =T Uy ars b Unlln= S Wy,

} =1
\whete @ry Ty oo &y BIC the roots (all different) of #(2) =0, we can obtain

frpm 1, by interchanging the roots in all possible ways, u essentially
different expressions v, #,, ... o,
The product

=
‘1:11 @t =o0 1 bt 4 ), = Fv),

N\
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where » is & new indeterminafe, is an integral function of » with
coeflicients which are integral and rational in ¢, ¢a, ... €, ag well as in
oy, Uy, .. Uy Decause F(v) is a symmetrical function of the roots of £,

The equation F(o)=0 1is called the complete Galoisian resolvent
of F{a)=0. Its discriminant is a rational integral fumetion of
€1, €2y vn Cny B, Ua, ... Uy, which does not vanish identically: so
that we may, if we please, assign numerical values to the parameters
Wy, U, ... %, Without making any two roots of the resolvent equal to
each other. In particular, these numerical values may be ordinary reala,
integers.

O\

7. The most important property of & is that any rationall ,levnctwn
of the roots of f can be expressed as o rational function q;" any ong of
the roots of K.

Let the given rational function be ¢ (.zrl, Zyy e xn’),‘;m‘d let

b (=), du, .- O
be the expressions obtained from ¢ by applymﬂ the substitutions which
derive ,, #, ¥, ... ¥, from 2,. These expre’s‘q})n% ; are not necessarily
all different in form; and two which have{different forms may have the
same value. Bubit must be remembered that ¢; is derived from ¢, by

the same permutation whlch“;\banggq.&m ity org.in
Consider the expression 4%

¥ ()= { _w:’ ﬁ‘-+‘..+ﬁ¢"‘ } Fsy;

- it

%

¢ (@) iz an integral ‘frhictmn of @, in general of degree (p—1), but
possibly lower, and s a symmetric function of @, 24, ... @,. Henece
the coefficients™of’y (») can be expressed as rational functions of
Gy Ca oo On S fﬁ}d if, after doing this, we put e=w,, it follows from the
above 1dm<olty that

ad

¥ (o) = F" (1),
7 NS o )
m:‘;} N ;(( l)juﬂ('ul; Cry £y oo G} Up, Uy, oon ),
where B denotes a rational function of the gquantities in the bracket.
This equality reduces to an absolute identity if on the right-hand side
we replace v, ), ... ¢, by their expressions in terms of i, #a, -.- #u,
Wy, g, -ee Une
The discriminant of F is

A= B @) F (@) F (u)
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and the quotient A/F’ (v,) is expressible as a rational integral funetion
of v, : hence we may also put ¢ into the form

V) F ) F o). I (7’#)2{(3"1_.)
b= s o),

where J {»,) is a rational integral function of .

It should be observed also that ¢; can be expressed ag the same
funetion of »; that ¢, is of o,

Finally, ¢, is expressible as a rational function of eny root of
F(v). Thus if we choose »;, all we have to do is to replace, in the’\
foregoing proof, A
Wy Vg, e Wy \' \,,.
by ACHRICH RN S \ o
where & is the perfectly definite substitntion which cmw,gi*ﬁé"«vl 0 2.
In general, ¢ is not the same rational fuonction of ¥ ag{"&t 12 of »,.

8. Several important consequences immediately+follow from the
theorem just proved. In the first place, we ma{\pub ¢ =, and thns
infer that R

All the roots of the Galvisian ?esohmt o?za:y be expressed as rational
Junstions of any one of them. .

An equation ha.v:mg this property 1§ called a normal equation ; the
Galoigian resolvent is Jecor i gl a1 Hml eguation, It must be

W\N’ brauli

remembered that the tame eq»ua:twn may be normal from one point of
view and mnot from auotl{ar, if, in the definition, we understand
‘rationsd funetion™ o Wlean “rational function with rational
coefficients.” By a\ébid of rationality we shall understand the
aggregate of all the @xpressions obtainable from a finite set of symbols
ty, fo -on B BY a finite set of rational operations; that is to say, all the
expressions whgeh can be reduced to the form

O b (s bar oo B)

\\ G (s By v b))
who{ra %, ¥ are finite polynomials with ordinary whole numbers for
~their coefficients. The elements ¢, , £, ... tmmay be partly undetermined
\paxa,meters or umbres, partly determinate numbers ; those which are
numerical may be irrational amhmetlcaﬂy, but ate here considered
refional in the sense of being given or determined. The mmplest
field of ratwnahty is that of ordinary rationa) numbers; this is
contained in every other field.
If t..1 s any algebraic number or symbol not contained in the
feld (1, £, ... tm), the field (2, 4, ... 24, i) 18 gaid 1o be obtained from

.\
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the former field by the adjunction of #,,.: this term iy specially
employed when #,., 15 a numerical quantity.

In the case of the Galoisian resolvent we may say, then, that it
is a normal equation in the field

(a5 Cay vo- €n} By Ty oo ).

9. If in the theorem of Art. 7, we put ¢ =2;, we arrive at the
proposition that

Erery root of an equation without multiple roots can be cxpressed aga_
a rational function of any one root of ity Galvisian resolvent,

If rational values are given to the parameters #, ... u,,,\ﬁke
resolvent equation becomes normal in the field (e, &, .- ) “More-
over if ¢, €, ... ¢, are given, not as symbols, but as actual) numbers,
the resolvent becomes a definite numerical equationy; Unless this
equation has multiple roots, it is still true that the khoiv]edrre of the
vatue of any cne root of the resolvent leads to the 2omplete solution
of F=0; because to calculate the function g} of Ark 7 in its
rational form it is sufficient to know the fb@ues of the elementary
symmetric functions of #, @3, ... &, and these are given by [

10. The total reselvent F'(v) may vk tnay not be reducible without
adjunetion; in the second Gsﬁwj«@: relh ibfaid, torpaan equation with-
out afection. RN

Tha irreducible factors gf the resolvent of an affected equation are
all of the same degree. <\

Let ¢ (4), ¥s(v) belany two such factors: let o, be any root of
¢, (v)=0, and ¢, apy,_ root of yy(¢)=0. Then (Art. 7) v, can be
expressed as an igfearal function, J(w), of »,. If the Tschirnhausen
transformatio ~y =J ()} is applied to ¢, {#) =0, we obtain an equatlon
x () =0_of-the same degree as y, = 0 which has a solution y=w, in
commom@th ¥o(y)=0: hence x(y) is divisible by . {y), avd the
degreec of ¥, cannot be less than that of ¢,. By a similar argument,
the de*rree of 4 cannot be less than that of ¢; ; therefore the degrees

&nhst be equal.
If % is the degree of each irreducible factor, we have an identity

I (0) =1 (0} g (2) e ¥ (0);
with mh = g,
so that m and % are conjugate factors of p.

Every one of the equations ¢;()=0 is normal, and they are all
Tschirnhausen transformations of any one of them. Yach may be
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called & primary resolvent of Sl@)y=0. The I«mowleflge of any one
root of a primary resolvent leads to the complete solufion of f (&) =0.

11 A simple example will help to illustrate the results so far
obtained. Let the given eguation be

F—afrz—-1=0,
and et @, B, ¢ be used instead of u,, 2, %.
The compiete resolvent 18 F'= ¢xy,
where
d=(v—ap+B-cp x=(0~bf+(c-a), ¢=(@—cf+(@—b)
One root of ¢=0is @ —bi+ci, and from this the roots 1,‘@($é'\of

the original equation are obtained. If we put W\
v=a—li+e, R N
t-a AV
then + P—e 1 Is <)

give the roots of / = 0 as rational functions of o, A

12. The reducibility of F shows thesexistence of asymmetrical
functions of a4, &, .- &5 which neverthelgss Kave rational values. The
ooefficients of the terms of & primaryslesolvent ¢ (v), considered as a
polynomial in v, w, u f_gu%b‘%%p&;,gajﬁonal; but when expressed in
terms of @y, @, ... &n iﬁley cannetyall be symmetrical, otherwise every

permutation of the roots of Awohld leave (v} unaltered, and this is
1ot the case. im\
3

13, Consider noa primary resolvent
,,{,!f;{fv)=(v—-1;1) (w—vy) ... (0—w,).
Any one of ig\feots, say v;, can be derived from » by a perfectly
definite pe;;nﬁ;tﬁtion of @1, @, ... @, let this be called 8. Including
the idepté&ai substibution s, we have in connection with y, just A
subsj:ij;ﬁions S1y 85, +o 8. 1b 18 8 most important theorem that #hese
sgcb{sﬁémﬁom Jorm a group ; that is to say, for every pair of substitu-

‘tioxis s,, 8 (the same or different) we have 548, =§,, Where §, 13 &
definite substitution of the same set.

Tt follows from Art. 7 that sinee v, and » are both roots of
& (v) =0, there is sn integral function J (v) such that

8y (‘DI) == J(’UI).
Moreover it appears from the same article that

J{”a) =8y (%) = 85 {8 (‘Ul)}.
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But since the equations
$i{v)=0, % {J(v)}=0
have a common root #,; and the first is irreducible, while both are
rational, each root of the first is a root of the second, and in

particular

S ()} =0;
that is to say, & {8 (20} s a root of ¥ (v)=0, and is therefore squal in
value to s, (v,), where s, is a substitution of the set s, s, ... 8. But
this equality in value must also be a coincidence in form, on account™
of the arbitrary nature of the parameters w,, #,, ... %,. Henece A
8580 = 54, ) \ %
it being understood that s,5, means the result of first applying”s, and
then applying ¢,. In a similar way s,6,=ss; but & isein gengral,
different from s,. R4

14. If ¥, is any other of the primary resolvedtdy there will, in the
same way, be a group of substitutions connectgd \with it. This is, in
fact, the same group as the one associated with %. For suppose that

P2 (0) = (0= V3,1) (0~ Bpeg V(8 — 1) 1
then #,.: can be expressed in the formy), «
ww e b?;'aﬁ{ﬂn};ary .org.in
and by the usual argument it fallows that
o= {0 —J (g} o — T (w)} .. {o — T ()}
The notation may be §0)arranged that
N ()= (i=1,2,...5),
and this being so, we-Conclude that
_ R ‘ > Phei =5 (Pny0)s
becanse whﬁ({g}eﬁved from ay,, by the change of #, into #,, and the
only sulgr{imtion which does this is ;.

Thégronp (s, 8, ... %,) i called the Qalvisian group of the equation
S(@)s0.  If the complete resolvent is irreducible without adjunction,
x&t—hnf and the Galoisian group consists of all the permutations of
Thy oy oer Vg

15. We will now select any one of the primary resolvents, denote
ib by ¢ (¥), and call it simply, for the present, the resolvent of £(a),
Assuming nothing about /() except that its coefficients are actually
given, ¥ (v) and subsequently ¥ (v) can be found by rational eperations.
The degroe of ¥ (v) In v at once gives the order of the Galoisian group.
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But we can go further than this, and determine, from an examination
of ¢, the elements s,, S, - & which form the group. The notation may
be 5o arranged that
p=(r—o)(v—w) ... (02— 0},
=) T Uy F o T Uy

Now the change of ¢, into @, effected by the substitution s, may also be
effected by & substitution o, operating on tho parameters w, s, «.v 2.
For instance, if

By = gy - o + Uy T Wgy + Uells + Uy,

W = Uyl + Ual'y + Uy + Waity T+ Utz + Ugds, ,{ :\
then se={azar) (m,mexy),  op= (arititte) (Wsktstty). O

In general, if s; contains the cycle (wumy ... mud), oy rm"sgi'nﬂ the

cycle (mity, ... %, and there iz a one-one eorrespondence hdtween the
substitutions s; and the substitutions oy  If oy 1s apphe&sto ¥ (w) in its
rational form, the result is a function x () of thé\iatme order, which
has a oot v, and theyefore coincides with ¢ ()0 Thus there are at
least A distinet permufations e, forming a growp, which leave ¢ (v)
formally unaltered. The same arguroent applies to the other primary
resolvents obtained from ¥, and since the:re are only Am substitutions
o altogether, it follows that there arg: preclqdy % substitutions o which
leave ¢ formally una-}temdi,bfmﬂlh?fwhytﬁ'f‘ hie we can deduce uniquely
2 substitution s belonging to tha“§aloisian group.

For instance, in the eKa‘Inple of Art, 11, if we tuke ¢ ag the

resolvent,
\\ o=1, o3={(ub),

and the corresponding Galoisian group ig
\ \ 4

{ & =1, (x Lv"f'z}
After oh@{'}nng the elements of the Galoisian gronp
'% G (sla Ty qh)s

its properties, a3 & group of substitutions, or more generally as an

Jabstract group, may be investigated, Theue are, in themselves, wholly
\m‘dependent of the values of a, @y, ... 5.

16. It will now be supposed that the coefficients of F ase
numerical ; and, as explained in Art. 8, any quantity in the field
(61, €2y .- €a) will be comsidered rational, no matter whether the coeffi-
cients ¢; are arithmetically rational or not. It will now be proved that

Brvery rational function of the roots of f which s unchanged in
numerical value by the substitutions of the Galvisian group has
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o value which can be expressed in a vational form : that is to suy, it is
equal in value to & certain rational function of the coglficients of £

Let the given function be ¢ (2, #,, ... #,,) and let P, U, ... 2 be the
roots of the resolvent ¢ (v). Then (Art. 7) there is an integral funetion
o (w) such that

d=d,=J (’1’1);
by = J(v2), by = J(T?s): —er Gy :J(’L‘A),
where ¢y, ¢, ... ¢, are derived from ¢ by applying the Galoisian
substitutions &, &, ... s,. Ilence Q
Gt ot o F = (w) T () + o+ T () O\
=8{e, €, o a s ty Uy o Uy, N

where § is a rational function, because 3J(v) is & ‘s';(r\rimetrical
function of @y, v, ... % and the coefficients of ¢ (v) are yational. If
10w, ¢; means the value of ¢;, we have, by hypothesi:g;f

- - 1 - = N\
¢1=¢2=---=¢h=—(¢1+¢2+u "‘.‘?5)
AP

= % S('c}!‘.‘:ﬁ%\”' Cn ; U, U, "'uﬂ);
where § means the value of the rationalfunction S.

If the coefficients ¢; are represé'tgd P)anglicaﬂ the function S,
even in ifs lowest terms, may Suo\ﬁfé'iéi% %uplara%gfg§é§plicitly; in this
case the value of ¢ is expressible as the quotient of any numerical
coefficient in the numeratof of § by the corresponding coeflicient in the
denominator. The Jact that we thus have alternative rational
equivalents for ¢ ingp@s one or more rational relations connecting the
coefficients ¢;. If\oh the other hand, the coefficients ¢; ate actually
given as numbdrin a definite field (for instance, if they are all of the
form a+ﬁ(}%,\With a, 8 rational numbers in the ordinary sense), the
parameters, bt the last stage of the process, disappear of themselves,
and weldbtain the value of & as a definite number in the field. The
pqi;zf: .of the proof is then that the value in question is expressible as a
sqoantity in that particular field.

) 4

17. Conversely, every rational funciion of the roots which has
@ rational value keeps that wvalue when any substitution of the
Galoisian group is applied to .

Liet ¢ be the rational funetion, and 4 its rational value, Express-
ing ¢ a8 a rational integral function of v;, we have

¢=J(n)=4,
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and hence the rational equation

J()-A4=0
is satisfied by »,, and consequently by v, @y, ... v
Thus J(w)=4;
that is to say, A=s5J{0) =235,

which proves the theorem. It must be remembered, of course, that
86 may or may not be formally different from ¢.  Moreover, in anys
actual case, if we reduce J(v) to a -degree lower than £ by means f
¥ () = 0 we shall in the end obtain A explicitly, if the value of s
actually rations): so the process of Art. 7, applied to & pgftierlar
function ¢ and a particular equation f, decides whether thg}.w}glﬁe of ¢
is rational or not. , A

Finally, there are rational functions of the roots wke}k\kaw yational
values, but change thess values when substitutions odet*than those of
are applied to them. N

To show this, let ¢ be an undetermined ratibnal quantity ; then

() =) 0~w) (8 n) = 4,

where A is rational in (85 ¢, «, :.,’én; Uy, Uy et If 2 18 any

substitution not contained in the (alosian group, &) (6) = v, (8), where

2 ias a primary reseiveﬂtdcﬁﬁﬁhﬂé#{fﬂé;m-ng-i®onsidered as al equation

1n &, 2

O-v =0

cannot have more that & —1) roots, even when the parameters have

fixed numerical valods (subject to the ususl restriction A+0). Since

there ave (m — 19,808 ugate resolvents into which ¥ can be transformed,

we have to exelude at most (h—1)(m—1) values of 6. For any

other ratiofialvalue of 4, it is the substitutions of &, and theze alone,

which leawe the value of y (6) unaffected.

. Eve:ry coefficient of ¢, considered asa polynomial in 6, ey, #,, ... #,,

,;g\nﬁhaﬁ"ected in value by the substitutiong of G; it not unfrequently
N\happens that some one of these coefficients, or & simple linear

combination of them, can be seen to have its value changed by all

substitutions not belonging to & ; in this case it Tnay be taken instead

of (). For an examyple, see Art. 29 below.

"st' & result of the three thecrems last proved we may define the
Galoisian group of f a3 the aggregate of those permutations of

&y, &y, v Ty, which leave nnaltered in value every rational function of
the roots which has a rational valie,
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18. If ¢ is any rational function of the roots of 7 it has heen
proved that ¢ can be expressed 2s an integral rational function of e,
and it has been observed that in virtue of o (v,)=0, this integral
function can be reduced so that its degree does not exceed (A—~1). An
independent proof of this affords a little more information. If, with
the usual notation,

x@ = {E St By,

vy ¢ —

x{(#) is an integral fanction of » which is also rational, becauge ity

unaltered by any substitution of &. Consequently O\
= x(m) O '
¢ ¢l lfl ( ?/1) L] p . g‘

a rational function of @, which may also be reduced to tﬁc form

&= X(”h) ¥ (o) ' () - ¥ ()
L3

zj(@l) :1\\;

where 3 is the dlscmmmmt of ¢, and 7 () 3¢ an\mtegral function, which
in virtue of \b(@l) 0 may be supposed, put into its reduced form, so
that its degree is not grester than Q%‘ 1. I ¢ is an integral fanction
of the roots, the coefficients of 5 ; will be m]t%%lal in

s dbra ary.org.in
¢, Ca: A C:a Uy, Ugy vor Up.
Bimilarly, 0N =5 ()8 (i=1,28,...4)

The quantity 8 is otz ¢ro, beeause it is a factor of A.

The substitutions %‘ & give to ¢ the different forms ¢, ¢, ... ¢y
these, however, ne\e'd 1ot be all different in value. Those subshitutions
of the Galoisidnygroup which leave ¢ nnaltered in value form a
subgroup, gr ddctor, of G which may be called the dnvariant group

of b. §
I faet, if s,, s, are any two such substitutions,
& ”\ ’ Fap =P =0,
Spumerically : hence Sup—$=10,

and gince the expression on the left hand is a rational function of the
roots which has the rational value 0, we may, by Art. 17, apply the
guhstitulion g to it, and eonclude that

(8. —$)=0;
that ig, 8, (8,8) =5p=¢

numerically. Ience s,s, leaves the value of ¢ unaltered, and the
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substitutions in question form a group, because 8,8, i3 identical with
a subgtitution of @, and it hag been shown that it leaves ¢ unaltered
in value,

It must be carefully remembered that the invariant group of ¢
eonsists exclusively of substitutions which belong to G There may
be other substitutions which leave ¢ unaltered in value, or even
form, but if they are not in the Galoisian group they are not to
be included. The fact is that we cannot infer for certain that if
sp—¢=0, then s (s.6—)=0, unless s, belongs to the Galoisidn®
group (c¢f. Art, 17, end), O\
Writing, as usual, s;p=d;, the function ¢ is a oot of the Jatienal
equation A
(¢—¢1)(¢"¢2)--'(¢“¢h)=0- “'( ™~
But if the invariant gronp of ¢ iz of order 4> 1, thdfoots of this
equation are repeated each % times : hence if we puEIA/% = 1, which is
necessarily an integer, ¢ is a toot of & rational eQuation

P+ b+ L+ b =00

19. If f (@) is redunible without adjuiiction, its Galoisian group s
intransitive, and conversely. W
First suppose that & is intransilive : this means that a certain
number of roots &Y
wwrw.dbrayibpry Opg.in (r<n)
are only interchanged ampng themselves by the substitutions of .
Consequently (Art. 16Jz:"> :
G ) @-2) . (2 ~a)
being unaltered bylany substitution of & has rational coefficients, and
S (&) 1s reducilfiedvithont adjunction.
Conversely,suppose that () has a rational factor
O~ Si{@)=(z-2)(z—m) o (@ —2,) (r <n),
then, iﬁ'ﬁ is transitive, it must contain & substitution s, which converts
somgyone of the roots #,, 2, ... ¥ry 88Y @, into & root @,.,, formally
»{iiﬁ%rent from 2, @, ... #,,. Hence s/ containg the factor (#—@p41):
bt since J13s rational gf, = £, and consequently

0=/3 (%2} = (@1, ~ ) (s — 22) ... {#osr— ) ;
implying that 7 («) = 0 has equal roots, contrary to hypothesis, Hence
if £ () is veducible, & is intransitive. The example of Art. 11 gives a
simple illustration. '

Itis possible to resclve £ {#) Tnto its irreducible factors by means of
rational operations, even when the eoeficients are connected by known
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algebraic relations. Unless the contrary is expressed, 1t will be assumed
henceforth that 7is irreducible withont adjunction.

20. Suppose that by the adjunction of a quarntity & the resolvent
% becomes reducible in the field (6, Ciy Coy oo € Uy, Uay ... %) If we
have

¥ = dny,
it follows by comparing coefficients that 8 satisties one or more rations!
equations in the original field. These must be consistent with each z
other, so that 8 must satisfy a definite irreducible sguation
()= +a it =0 AN

with rational coefficients, which we may suppose integral becahde, if
necessary, § may be replaced by 26, where 2 is any ration a],‘(fﬁéfntity.

If, by any means, this irreducible equation has bee daund, it is
possible to actually resolve ¢ into its irreducible fabfors in fhe new
Jield; and this resolution is unique. We shall have \

¥ =XiXn - X ":.\
and @, will he a root of one of the it:r,eﬂ:unible equations y;= 0.
Arranging the notation so that x (¢,) = 0, and for convenieuce putting
X: =X, we have au equation Ny
ve%\@fg"ﬁErlz'aulibral'y_org_in
which, in the new field, will seive as a primary resolvent of F=0.
This is clear, because x (v) is {nly a transformation of a product
(@ *\x’if‘i) (=25} ... (0~ 2,)

8o that (Art. 7) x(v)<0%is a normal equation ; aud every rational
function of @, 4,792, can be expressed, in the new field, ag an
integral function nf\rvl, the degree of which is less than that of y, and
which is not Qf\’lﬁgher degree than ({-1) iné. As in Art. 10 it can be
proved thaf the functions x1, Xz, ... x; are all of the same degree in w,
and are Fsehirnhausen transformations of each other,

In-éxpressing any rational function of &1, ... 2, as & reduced function
o fv{~1n ‘the new field, we may proceed as follows. In the original field
let\;f: =7 () be the reduced expression for ¢ (Art. 18); divide {v) by
x (v) until the remainder is of degree lower than that of x. We thus
obtain an identity

N

2\

F(2) = Q (e} x (v) + £{v),
and by putting »=v,, we have
¢ ‘_‘j (’51) = ;G (01)1
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because x () =0. 'The coefficients of &, which are integral functiong
of 6, may be reduced to their lowest degree by dividing them by o (&)

It will be noticed that x (¥) must contain & explicitly, becanse 1t is
a factor of i (v), which is irreducible in the old field.

51. We are now approaching the culminating point of Galoi’s
theory. Urless G is a simple group, it will centain self-conjugate
factors distinet from the identical substitution: and smong these there
will ba a certain number of maximum self-conjugate factors. Let T be
s maximum self-conjugate factor of G, of order £ and of index /(= A&\
with tespect to 6. 'The notation may be so arranged that A

T=(81, &1, ++ Sch \ N
Lst 2 be an undetermined rational number, and g o

B=¢(2y, @y --- 2w} = (2—0) (B—21) .. (z—;v@:

where v, ¥, --- ¥ are the roots of the resolvent ¢ = 0,"’w}1ic]1 correspond
to the substitutions of T. Then the value of & unaltered by any
substitution of T, and by choosing 2 properlyj@&rt. 17) we can make
sure that the value of ¢ is altered by overg-substitution of & which is
not contained in T, O\

Consequently 8 is a fanction of whigh T is the invariant group, and
ig a oot of a I‘atl()l;l.\’&\% eqy ?&l‘hm;ﬁyop i

@ (f) =P +a,dh+ b+ L+ =0

So long 23 2z, #,, #s, ... 8l Yemain undetermined, the coeflicients in
this eguation are integ;gi‘ih the field (z; oy, s, - Un; €1y €5, 000 G): 1B
is possible to give ﬁ)ie\d\r'é,tional integral velues to 2, #;, %, ... %, 80 a8
to make the coeffigtents rational in (¢, €4 -« €}

20. It 'is:i\mportant to determine the Galeisian gronp of the
equation ,ss@ti}ﬁed by 6. To do this, it is necessary to use a lemma,
derived\{gmh the elements of the theory of groups., All the substitu-
tiong\of & may be arravged in the form
NN 81, 8y, - 83

N

\ ) 251y BuSay - By

Lis, iy - 48
whera &, £, ... £; are distinch elements suitably chosen from G
If any substitution ¢ of & be applied by premultiplication to the
glements of a row in this scheme it will prodnce & new row which con-
sists either of the elements of the same row, ngually in a different order
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or else the elements of another row, usually in a different order.
Int no case can elements of the same row be changed into elements of
two different rows.

To prove this, suppose, if possible, that, for instance,

Slafy = 0u8y, S8y 1,8,

where @, b are different. Then, since s, &, ... 5, form a group,
Sla= o887 = BB, St =1pS,87 = b8yt

therefore Fa8=1y &y #a, = tb“s'js‘(-l =£.8
which is impossible, because #,3, is in the Jth row, and {on accomxt:of
the way in which 7, #, ... #, are chosen) is distinet from ¢,, whi¢hyis in
the ath row. A\

Hence we may say that the applieation of any suhst@t}ltidn of &
produces a permutation of the rows of the tahle. The&(ji\permutations
form & group, denoted by /T, and called the complempntary group (or
factor-group) of G with respect to I. The only substitutions of @
which leave the first row in its place are the eJQ’m ts of T, and these
leave every other row in its place, because N

Sitis =98 ﬁi_.,-.?;,,; 4
for all values of 4, j, &, since T'ig self ’6’njugﬁ% ;
.. 1 u ry.orgin

Moreover any substitution \%’v‘ﬁl\gff%gnverts the firsh row into the éth

must be of the form #:s,. Applyitig this to any element #s, of the Jth

TOW, We obtain K
+8J

] .h\\. ) f,;SR . t;s;,.
Now beeause T is)splf*conjugate, we may put
'Q.\"." Satj:tjsc’
and I}BHBB .t\ . t:8, !fj; 8y = fgt;&’c 8y = t;tjsc'.

Finally\t}\t?’: %452, Where #, is a definite substitution determined by
%, & alend, hence
¢ \ A titjso' = ﬁg&;&'; =8,
and the substitution #s, converts the Jjthrow into the kth. Conversely,
the only substitutions which change the jth row into the 4th are those
which change the first row into the ith. Consequently /T, considered
as a group of permutations of rows, may be represented in the form

(Tl} LITRIE 1’1);
where ; is the definite substitution of /T which changes the first row
into the Zth.

M. 2

Q"
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The substitntions &, &, ... & do not, as & rale, form a group : but they
behave like & group when considered as operations on the rows of the
table.

23. It will now be shown that the Galoisian group of the equation
@ ()= 0 is holoedrically isomorphie with /1. The values of 8 are all
different, and we may denote them in such a way that

6, ~ £,6, = t,5,0,. (i ;: " ) N

This being so, every permutation of rows in G/’ corresponds to\&
permutation of (8,, ¢, ... 8;), and every substitution of & producegion
(6,, 6, ... 6;) the same permutatien as it does in the rows, ’\E\)w.let
Q(6,, 6y, ... ;) be any rational funetion of the roots of o (ﬂ)}% ¢ which
has a xational value. Then i :

QUb,, by .. 8)= R (), o, . 2N
where & 1z another rational function. Sinece the\v.‘ﬂue of R 1s rational,
it is unchanged numerically by any substitutigwef ¢. This substitu-
tion applied to & produces a permutation of}f)l, 8, ... 8; corresponding
to an element of G/T. 1f, then, H is the group of permutations of
by, By, ... 6; which is holoedrically isqméi'phic with &/T, considered as a
permutation of rewsyedbryelibrtitytory of F must leave @ (6, 6, ... 6;)
unaltered in value. Converselypif @ is unaltered in valne by every
substitution of FI it mustsbe rational, because i this caso every
substitution of & leaves-abiunaltered in value. Therefore (Art. 17)
H is the Galoisian gréup'of «(6)=0; and we may put 77 = G/, in the
sense that these twogroups are holoedrically isomorphic.

Since G//T' ig gramisitive, H is so too, and hence the equation in 6 is
irreducible (A#.>19). Moreover, wo can prove, as in Art 18, that it is
a normal\gqq’ga ion, by taking the funetion

O é b o
{9_31+6_32+... * 6_*61} (8),

»&{hg\re ¢ is any rational function of 8,, 4,, ... # and ¢,, by, ... Oy are the
Ndinetions derived from it by applying the substitutions of G/T.

d

24. Conmsider, now, the effect of adjoining 4, to the field of
rationality : this means that every function R(6i; e, €, ... 0,) which is
rational in form is to be considered rational in value. The group T is
the largest group in & which leaves the values of all such functions
unaffected, and it is, in fact, the Galoisian group of S (&) in the new
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field. To prove this it has to be shown that every rational funetion
R (@, @, ..2,) which has a rationsl value A4 in the new feld is
expressible as an explicly rational funetion of 8.

To prove this, take the function

_R (wl_-, Doy ves xn)-
g8 ’
6 being arbitrary, and apply to it all the substitutions of . Then
the fuuction

6-6, 66,
can be expressed in a rational form O
(6 e, e .0 0) N
(Arts. 7,17). Now if O

a(0)=(8—-0,) (6-6)...(6-6)
g0 that «(6)=0 is the irreducible rational equaj@y satisfied by 6; in
the old field, we have \’ 4
(0-6) (6—6) .. (6 6)L@(O),
where £=#/l. Moreover, among the denominators
~ 8 — 63 (6 -
.. (¢~ g!wv%(‘}ﬁrangﬂbl‘ge)y.OI'g.in
only I are distinet, namely, N
(6 - 6,06~ 6,), ... (6—8).
Hence it follows that ’{’}\
AN B ~
(it ig) e @-T O,
where 7'(9) is aZafional integral function of 6. If the value of R is
unaltered by\:f;}ci’l subgtitution of T, all the fractions with the de-
nominatof" ¢, must have the same value E in the numerator, and
we Inayz}vﬁbe, as an arithmetical equality,

~O" 7= (g’% - S_Aé% . 6—‘_}5-*16; N a-{“—es) a(6)
trae for all values of 4, The guantities L., L,, ... £; are all rational
functions of #, @, ... #,. By putting 6 =48,, we ohtain
_ T

Fol (6,)
and this may, if we please, be replaced by an equivalent integral
function of degree not excecding (/- 1)

B

2—2

O\
A i
{.g:ﬂ:;, B ,_,__} (=6)(6=6)--(0=0) "
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"The theorem proved amounts to this :—

If 8 is o rational function of the roots of F@)=0, whick has
Jfor its imvariant group a self-conjugate fuctor, T, of G the effect of
adjoining 0 to the field of rationality is to reduce the Gulvisian
group of Flx)=0 from G to T.

25. In the new field we can construct a new total resolvent for
Jl@). In fact, if (#—v) iz any factor of the old resolvent ¢ (v), and if
the substitutions of T give # the values vy, @, ... %, then the news,
total resolvent is

Fiw)=(v—o) (v—2) ... (-0 oA\

=P+ P+ L+ g, O
where the coefficients are rational in the new field. In oney a4 least, of
these eoefficients #; must oceur explicitly, because y (v) is inreducible in
the original field. Moreover <\
() =B (v) F2(v) ... FL(0),

where F; () is obtained from &, (v) by changings 91\}0 #;, then expressing
f; and its powers in terms of 6;, and finallypeducing the coefficients by
means of « (6,)=0.

If I, () 1s redueible in the new ﬁeld,‘;ml]“ its irredueible factors must
be of the same degree (cf. Art. 10), and any one of these may be taken
a3 & new primary wesclbeatilibEreryoradn of / may be exprossed as a
rational function of oy, 61, o1, Gay .- Cuy @, #ay 200 2, Where # s any root
of the new primary resolventi

3

26. The equation'e(d) = 0 satisfied by the adjoined irrationality
0, is usually called @ Galoisian resolvent of £(2)=0: bhut we shall
find it convenientiAp call it a Galoisian auxiliary equation, ot simply
an auxiliary (}ql\laﬁon when there is no risk of mistake. On the other
hand the equation F;(v)=0, obtained in the last article, may be
properly egliéd a resclvent.

1f we form the anxiliary eyuation according to the general method
of A’ 21, its coefficients will contain the parameters ,, Uy, ..o Uy i B
complicated manner. In any practical case we at once gimplify the
auxiliary equation as far as we can by giving definite values to the
parameters, thus making 8, a definite numerical irrationality to be
adjoined to the field. It may or may not be conveuient to give
definite numerical values to the parameters as they occur in 4, {w): for
s0me purposes, even in a practical ease, it may be convenient to leave
them umbral. This is one of the main reasons for distinguishing
‘between an auxiliary and & resolvent equation : in other respects they

£
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are similar, for example they are both normal The resl service
rendered by an anxiliary equation is to define a new field of rationality
in which the Galoisian group of f(#)=0 is of lower order than it was
origivelly, while at the same time the Galoisian group of the auxiliary
equation in the original field is of lower order than that af fx)=0.
Unless this last condition is satisfied, we do not gain anything by the
construction of an equation @ (#)=0, even though the adjunction of
one of ity roots lowers the order of the (aloisian group of 7; becanse
in this case the Galoisian group of @(#)=0 is, in its abstract formj
Just the same as that of /(2)=0, and we are confronted with.ths
original problem in another shape. K N,

If, however, as we have supposed, 4 is a rational function.ef the
roots of f which has for ifs invariant group o proper selfseonjugate
factor of & (that is, one which is not merely the identicaléubstitution),
the problem is really simplified by being made to depend upen two
equations !

a()=0, A
i (’”: 91) =1, '\ “

where the first is of order , a proper fagbapvof %, and has a Galoigian
group of order I in the old field ; while the second is rational in the
field obtained by the adjunction of &¥any root of the first, and has
& (aloisian group in the new“ TSI NPEAL WBIM is either ki,
or & factor thereof, and is equal o any case to the degree of ; in v, if
Wwe suppose, &5 wWe may do,"jz@t ¢ is irreducible in the new field.

27. As soon as H.é"brigina] Galoisian group of f has been
determined, we can Yondtruct what is called 2 composition-series for G
in the form o™

O\ G, G, Gy Gy 1,
where 7 igﬁ,@;}t{ﬁximum self-conjugate factor of &, &, a maximum
self-conjugete’ factor of G, and so on. Using the conventions
Go= G, \&.1=1, we have a set of indices
m:.\.‘" el: Bay cae 811: 330-!-1:
Such that ¢ is the index of G with respect to Gi-1.  The gromp G,
is simple and itz order is Bprz-

We have seen that if we construct a quantity a, which is & rational
fonction of &, @, ... #, and which hag G, for its invariant group
o will satisfy an eguation

afe) = a4+ gatly ., +a,=0
which 18 rational and irreducible and normal in the field (1) Cay -0 6y).

Q"
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By the adjunction of any one of its roots, we obtain a new field of
rationality, which we may denote by (=, ¢), and in this field the group
of fis Gy,

We can now construet a function for which G is the invariant
group tn the new fleld. Leb &, &, ... ta (where m=hlee) be the
elements of G, and let @ be an undetermined rafional quantity of the
new fleld. We may arrange our notation so that

'vls '?"‘.3) e 'Um

ave the expressions obtained from o by applying the substitutions of
;; and then, if we pui O\

B=(0-v) (0-25) ... (6—wa), O
B is invariant for &, in the field (¢, ¢). By ehoosing 8 pt'gpérly, as
a Tational function of «, it will be possible to secure/that o other
substitution of @) leaves 8 numerically unaltexed\(¢f. Art. 17).
Employing & notation which is now usual, we may vwrite

Gri=8G+ &G+ i + see'(}'g\\:
as an equivalent for & fabular arrangementasuch as that of Art. 22.
Hence we seo that the effect of applying(@8l¥the substitutions of &; o
B i8 to produce me, expressions which\have only ¢, different values,
each repeated m times. They are~the roots of an equation rational
in the new field, il Y 2ibsa™ g E Yut since all its roots are of
multiplicity m, it is of the form { (8)}™ =0, where b (8) is also rational,
and of degree e,. Q

Consequently 2 is@d oet of an auxiliary equation

BB = BB T+ 8, =0
with coefficientwhich are rational in the new field..

This equation is normal, becanse /Gy is 4 simple and simply
transitive @iotp; hence by the adjunction of any one of its roots,
all thq@)%iers become rational, and the Galoisian group of / becomes
@, inthe new field (e, 8, o).

L Moreover we have

’ Fov)=(v—n) (®-0) ... (0—2,) = 0™ + 40" 14 ... + ¢

a total resolvent for f in the field («, B, ¢) with coefficients which are
rational in that field. This process may be continmed until the
Galoisian group of f is reduced to &,; and finally, by forming an
auxiliary equation of degree e,,., & is reduced to unity, and each root
of f is expressible as a rafional function of the field (a, B, ... A, ),
where o, B, ... A ave roots of the (p+1) auxiliary equations. If
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desirable, this rational function may be transformed so as to be
integral in the adjoined irrationalities,
The ¢th auxiliary equation 3z of the form
S ST AL TR N (
with coeflicients rational in ¢, ¢, ... ¢, and the seleeted roots of the
preceding auxiliary eguations.

28. It will be well to illustrate these very umportant results by a
gpecial example. Let tho given equation be
Sl =+ v+ ++ra+1=0,
Then if # is any one of its rooks, # =1, and the other roabs:af‘e
#2722 o4 %, #%, 'hue we have a very simple ease of anormal Q@ati’on
It may be proved that f(x) is irreducible without a,d.]u;t}c,}mu this
will, indeed, appear incidentally from what follows. ¢
If we put o\ -
o m=ar+ bt ot + drt 4 e +ﬁ '
=t H bt e+ dr e’ p
Ty=art + %+ or® + dﬂr’s+ei\+~j‘? \
wy=art + b+ o + driter? + /i,
V=i + Pt o2 ds“m + 74,

= ar® + br® + crdady +ert+ Jr,
www dbraulibr ary.org. in
then o, is derived from v, by chauging r to #, and 4, v, ... v are the

roots of a primary resolvent, ¥ (w)=0. prrwxmg the operation of
changing  1to ¥; as a perrgutatmn of the roots of #, we have
s=1, L 5, (124) (365), s=(182645),
5,=(142) (3{:6), ;= (154523), 8= (16} (25) (84).
These are ’qhé;éié}:aellts of the (laloirian group of f, and combine
according toghe-multiplication table

N

{ "\'Q v/ l
W 82 & ¥ & 5
O\
4 ..\” 3
o\ 8y S 8% 1 & §
\ )

8 8 & & 1 &

8y T 5% 8 5% %

85 85 1 8 8 &

7] 85 8 & & 1
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which i to be read s/~ s,, 58 =48, cle. b appears from the table
that #.8 = 88,, 80 that & is Abelian, and every one of its factors is
self-conjugate.  As a watter of fact, if we pul =5, the elements of
fx are
1, s, & & &5

and the group is eyelieal. It ix alsn travsitive, s that f(2) is
irreducible without adjunetion.

One factor of €7 is {1, &, &), and from this we can derive an
auziliary quadratic. To find a function of which (1, 5, 5,) is thp\
invariant group, we start with

(E+u) 6+ ) (B4 ), o\:\
in this expression the cocflicient of £#a is O
ot £

and this is, in fact, & function such as we require, bei’:mﬂ{; {8y, 85, 85}
each convert it inte o)
FaR s
which has a different value becanse £ is irredudible.  If, now, we pub
BT g = kAR
then ¢, +g,~~1, and =2, In virthd of # (rj= 0.  Consequently
18 & 100t of the auxiliary equation
Frgh2 =0 (1).
www.dbraulibeary org.fi

wify = o

A 2
and adjoin it to the field ‘of rationality, which thus becomes (:). The
Gal{_nslan group of Areduces to {1, s, sy, of which the only self-
conjugate factor if wnity. Hence r must be the root of an auxiliary
cubic, and sinedly is changed by s, s into #% % respoctively, this

Let ns take

aunxiliary cubie’is ’
\:s“\.* (e~7) (z~7%) (z—14)=0;
or, O.E"‘Q ltiplying out, and expressing the coefficients in the nes field,
188
4 .\" 'Y

~ Py (1) 2-1=0 i {2).
N\, Y aisany roob of this equation, the others are 2% z*; finally the
Toots of the eviginal equation may be expressed in the form
=, nhEh nE2i=pnsd (g 1) 5+,
TSt -t giba, re=af=— (L4 2oz -1,
o=z =2 -2 — (1 + )
I£ we solve (2) by the method of Art. 4, we find that

(81 + we® + w8y
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is a root of the quadratic
Bt (2p—~13)6~T(20+1)=0,
one root of which may he put into the form
(o TEAEIBEBIL 1480

2 2
Let a definite cube root of this be extracted, and called 6 s then
since
(m+ ez + o2) (o + et + wzt) = 2y + 1 =14 T,
We may write

—1+z O\

my et +ats Ty 3i':!, %+ o’y Folnt=4, )

) OV

Z 0+ o' =4/7/6; -

whence, by addition, U
3,;,1="1”-\/7+9+3':-{T A\
2 b O
Ml RN PR L L VL R RN

3 ‘EF.

The quantity 4 is of the form e+ mﬁﬁd o, f# real; and the
question might be asked, whether « andﬁ’a}\dmit of representation by
means of real radicals, This is not theichsé, because « is the root of 8
cubic with all its roots real, so thateilie formula expressing it again
involves cube roots of complew gubntititibiary org.in

By the adjunetion of % thewesolvent ¢ (v) can be expressed as the
product of two rational facters ; one of these is
Fi(0) = (0= i) ) (v-0) =0~ P+ Qo I,
where \\
P=(a+bpd)p—(e+e+f)(1+p),

@=— (&P +d) (L+g) + (F+ /Y m
-x!w(c_c.c.‘-i- bf +de) (2—y}+(ae+be+df) (8 +1)
(5 0d + du+ab +ef + fo +ce+ af + be + cd),
,\'R\—“d”+b‘*+ &+ dirE o f
N (@@t e+ b+ B + B+ dd+ ce
~O _ +da + de + &f + Sb+ Ef + A+ %) gy
\\‘ —(@d + ot + Ba+ e+ ca + b+ A + A2 + die
+&a+ee e d+ 1%+ A+ ) (1 + )
+{abd + agf + boe+ edf ) (2 — )
+{abf +acd +bde+cef’} (3 4 91)
— (abe + obe + ace + aof + ade + adf
+bed + bof + bdf + bef + ede + def ).

* Holder, Mathematische Annalen, zxxviil, 307,
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The other rational factor may be obtained from this by changing #,
mto — (1 +,). o

This example affords a verification of the theory of Art. 15, The
permutations of the parameters which leave i (¥) formadly unaltered

e o =1, oy = (dba) (e/%), oy = (edfbea),
o = (bdn) (fee),  on={chfdea), o= (Ja) (eb) (de),
and these could have been found by experiment from v (v), withous
assuming any special relations among the roots of f(z). We shoudd\
then infer the Galoisian group of f(#) from the permutations crq;’,sa\tld
hence finally discover the relations conmecting the roots, The per-
mutations ¢ which leave F, (») unaltered are 1, o, o,, as may easily he
verified; while oy, oy, oy each convert &, (v} into the otlier rational
factor of ¢ (v). \\ .
Instead of starting with the factor (1, 8, &,) % might start with
the factor (1, &) This leads to the auxilia,r{ Bquations
-2 —-1=0 O (8},
2=t 1=Q':\:.' ..................... {4),
where we may suppose O\ ’
n=r =gk 7,
With the notation of Art, 4 we find that 4 = B=7,
www,dbggg‘lgﬁ'f%;in

& 8y
3y1=—}i¢3~+-7}9:«1+6+-1- 13‘1“3 62,

and the reduced forrgs\ﬁr the roots are
n=%h, M=’ =pa-1, == CASSVERS
s =% :=>— (B - a-p+l=— (=1} (2 + 1),
NI =-nAtE -l re=Rt=—zity.

29.\o§n"genera1, & composition-series for G may be constructed in
more 4tays than one ; but in every cage the indices € €, ... 85, are the
’gg,mé,‘i’n number and value, and only differ in the order in which they
ocplir® ; moreover, the factor-groups G/, are the same, except for
\he order in which they oceur, and all of them sare gimple, Thus the
number and the degrees of the auxiliary equations are the same in
every case, and however they are formed, the problem of solving them
has just the same degree of difficulty. This shows very clearly how
deeply the theory of Galois pemetrates into the special nature of any
given equation.

* Birngide, Theory of Groups, pp. 118-123,
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A fow words may be said as to the effect of adjoining a rational
function of the roots, which has for its invariant group T, a factor of @
which is not self-conjugate. If the order of T is £, and we put A/k=],
1t can be proved, as in Art. 24, that the adjoined function ¢ satisfies
& rational equation of degree J that its Galoistan group is simply
isomorphic with the permutations of (T, 4T, ... 4T) arising from pre-
multiplication by substitutions of &, and that the adjunction of ¢
reduces the Galoisian group of f from @ to I'  If we adjoin all the
roots of the equation satisfied by &, the group of 7 sinks to that.
factor of & which leaves each element of (T, T, ... £T) unaltered:
This factor is the group consisting of all the substitutions commonte T
and its conjugate groups £T%™; a gronp which is self-conjugate in T.
Consequently, the adjunction of all the roots of the auxiliady equation
a($)="0 is equivalent to the adjunction of any ratigr;azl finetion for
which the self-conjugate group last referred to is the\Jnvariant group ;
hence it is unnecessary to adjoin any irrationalitis except those of
which the invariant groups are self-conjugateNn .

To avoid misunderstanding, it may be.ig'macrked that a group G,
of the eomposition-series is not necessaily self-conjugate in &3 but
before constructing the ith auxiliary,equation, we have reduced the
Galoistan group of f from & to Gih, and in #his group G is self-
coujugate. The advantage ofchisbsEBURE 3 RESHBm self-conjugate
factor of G, is that in this ¢ase G,../G is a simple and simply tran-
sitive group % ; hence the #60 ‘auxiliary equation is normal, and, snbject
to this condition, of the{lGwest possible degree.

From what has béenvsaid it follows that the natural classification of
equations is according to the properties of their Galoisian groups.
Eguations of quite “different degrees are zolvable by processes of just
the same complexity, provided that their Galoisian groups, in their
abstracf\ﬁjl‘m, arg identical,

.\ .

30 There is an important theorem which, to a certain extent,

Aotmis’ the converse of that stated in Art. 24, and more genesally in
NArt. 29, It is as follows i—

Suppose that ¢ (y) =0 is any rational equation such that the
adjunction of one of its reots makes @ primary vesolvent  {(®) re-
ducible : then this some reduction may be effected by means of one of
the Galoisian auxiliary equations constructed after the manner which
has been emplained,

* Burneide, pp, 29, 38—40, and Art. 22 above.
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We may suppose that ¢ (y) =0 is irreducible. By hypothesis, 1 (2)
becomes reducible in the field {3,): let the new irreducible factor which
has the root o, be x (v, 1), a function which must contain , explicity.

With a proper arrangement of the notation, we lave identically

X(m g)=(0—2) (v—u) ... (v—w).
The substitutions (., 5, ... &) of G which are ussociated in the wsual
woy with vy, vy, ... Ve must form @ group T, To see this, we observe
that by Art. 7 we may write

x="{o—n}fo—g (@) ... fo~ji ()}, S
where j,, ... /» denote rational functions. Hence the equation O
X1Ja (@)} =0 O
has a root v in common with x (v} = 0, and consequently( Y
X {Ja (@)} =0 42

N
forb=1,2,..% Butsinces, and s, belong to the@zi}oisian group, we
can infer from \

Sa (1) = Dy = () (90
that 85 (8291} = Ju (o) \ -
heres X {-5':) (<"'a- ’?«‘1)} i:O '
and 5,5, must be one of the set 5, syor .

Now let w (2,, 2. yve o b aliBElonaPrad®tion of the roots of F for
which T' is the invariant groupy\this will satisfy a rational irreducible
equation 4

O a@w=0
of degree A/, We‘s}ﬁ\fl have a resolution
@) =4 (v, u) i (9, u) ...y (v, 1)
with I= A/k ; and’we may suppose that ¥ (v, w) = 0.
Whatgxrgr, alue the rational quautity ¢ may have, the function
A (E=v) () .. (F—ny)

is igﬁ;ﬁ&ble for the substitutions of T: hence it may be expressed

{&75.°24) as an integral function of 4 and & say J{(¢ u). But the
N thnetion is also x (%, 3,) : so that the rational equeation in 4

bw=J{E uy-x (¢ y)=0
has & root %=1 in common with @(u)=0. By giving ¢ a suitable

value we can make %, the only common roos, The process of finding
the highest common factor of ¢ (u) and b () leads to an identity

Pa+ Qb= Ru- 8,
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where R, 8 are integral functions of g ; and sinee @, b have a linear
faetor in common, we must have

Ru, - 8=0,
= SiR,
& rational function of g, which may be reduced to an integral form
=9 ()
by means of ¢ (1) =0.
Hence iy {0, u,) =y v, 6 (1)}, A

a rational factor of ¢ (w) which vanishes for v =, and must therefors
cotucide with x (v, 3n) because x is irreducible, and the degrees of beth
factors are the same. l'his proves that any new irreducible fa&’rﬁr of ¢
obtained by the adjunction of 3 ean also be obtained by the*adjunetion
of a quantity # which can bhe expressed as a rational fuf\qctioh of the
roots of f N

Rational functions of the roots of # have beenlealled by Kronecker
natural irrationalities (in the cose when their valites are not rational, of
course) : thus we may express the theorem bylsaying that every possible
vesolution of the Galvistan resolvent of an pgiation by means of algebraic
operations can be gffected by the adjunction of natwral irrationalities.

The roots of a chain of noz;m%é&&lcii iau_mg‘ilis]iﬁy equations are
natural irrationalities : in a cé %&ﬁéﬁ&%ﬂ%&uﬂﬁ'& “simplest” set
of irrationalities in terms of whieh all the roots of the given equation
can be rationally expresaeg:.(

€ 3
N7



CHAPTER II
N
CYCLICAL EQUATIONS "
{

8l. Taw only irreducible equations which have unity for their
Galoisian group are linear, and require no discussion, “\Phe next
simplest irredueible equation is one of which the Galgistan’ group is
eyclical, so that AN\

G=(1,s & .. ’
with =1, PN

This is called 2 cyelical equation. Théxﬁ'ecessary and sufficient
condition that & rational function of its"o6ts should have & rational
value is that its value remaing unalfgred when the substitution s is
applied to it. R .
ppT]:le group (7 must r‘g%ﬁ!gﬁgﬁ!l%ﬁ}%gr i;r;upposed to be irreducible:
hence s must consigt of a singie®ycle which, with a suitable notatiou for
the roots, may be writteqj(’ﬂ'te forms

%Qﬁl%... 2. = (12 ... »).
If p is any prime }ctor of », and # = mp, the group
O Gu=1, e 0,
is self-conjuga{'a.in &, and we can form an auxiliary eguation
\‘ o (Gt) = 0,
of degré%a:'which reduces the group of £ 40 &,.

[£¢ 1s any prime factor of m, and m — lg, the group
~O Ga=1, 5 24 gt-tipe
\is} self-conjugate in Gy, and we can form another auxiliary equation

B(B)=0
of degree g, with coefficients rational in the field (o), which reduces the
group of £ to s : and =0 on.

It thus appears that if

n=ptgt .., 2t
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where p, ¢, ... z are different primes, the complete solution of /= 0 can
be obtained from (A+ &+ ... + #) auxiliary eguations : & of these are of
degree p, £ of degroe ¢, ... £ of degree =

Each of the auxiliary cquations is cyclical.  For example, the group
of 5(B3) is /G, and this is cyclical, because if we break up G, into
parts {or rows) with respect to 7, we have

G‘]_ = Gg + SpGg + SEFG,; + .0t S{Q"l”"Gg,
and henee SPO = 8P, + sUTUER, 4 |, 4 glaTHR Y ~

a cyclical permut-at-ion of the parts. In other words, the -group of b ¥s
of the form (1, o, &%, ... ¢%1) with o2 =1, and so for any other aumha‘ry
82. Thus the solution of any cyclical equation may b’e made to
depend upon the sclution of auxiliary eyelical equatwns of prime
degrees. In the first place, however, wa shall exp-}sﬁn & process of
solution which is applicable to the original equatiehas well as to its
auxiliaries. This solution expresses the rootgeFyf rationally in terms
of its coefficients, a primitive nth root of unity ¢, and the sth root of &
quantity which is rational when e is adjoined to the original field.

Let = &y + ey + €l
then 86, =z, .—\agzggs%d.bmtwbggwe%;& el
and siwmilarly s‘lf‘}j = ¢ 0,
heneo s (ﬁl )= e = g,

and 6;" must be a rati 1 quantlty m the new field, because ifs value
is unaffected by any su &smutlon of @, and the group of F in the new
field must he eithiey & itself, or a factor thereof. Consequently we may
put \
6,= YR,

where "JR\denoteq gome one definite nth root of the rational quantity %,
for mstance the real root, if it exist. & may, and in general will,
&Xphmtly confain the auxiliary quantity =

\J Now consider the expression obtained frem 6, by changing € to <
where % is any positive integor. Calling it 6,, we have

Op=a,+ Fag + ..+ iy

89“; = €_k6k,

and hence
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Assuming that the value of 6, is not zero, it follows that

by = B, 6/, (k=139 3,...Et-1)
where By 15 a rational quantity in the new field.
Finaily nH =G Fh+0,+ .48,

==+t + B0+ B0+ + B80T,
By changing ¢, into € %6, we obtain a similar expression for ay,,,
As en illustration, take the example of Art, 28. I the first mode
of solution, after the adjunction of %, A

14+ 8,/21 - /7 .
GISZ—JT.—\/ —_-5---4-3{] —(3+6y1)m, ’\"\’

'\

2 3+ 6 ) \J
8=y, + 6, Jﬁ_f.su(?__ﬂ “os R
Bt=2y + 0, + 3;6%__§5__491) o

54y +(8+%)w \
TR

$%4 2
&/
&2, 2\

=y + wf + AT

0.'\'
'8)
\

w

In the second mode of solution
67 = 7_“1'_221&3 =\(Bw + 2),

- and the roots of thmﬁirst-dbxﬂiﬂi‘bfé@}{aﬂ“&f'&re given by

3?}1 — ',,_:I .]_.91 _ 1 ';30)612’
i'\\ 3
B 1+, + _'73“.’ o,

N\
%
=

3yp=~1+wbh — 2—7— )%,

O

L D

(N
83. %g}method above explained breaks down whep 6. =0 for each
primitivgrget . To avoid this diffienlty, Weber* hag put the expression
for @, g0 a slightly different form as follows,

~ :‘Ffﬁé'ha.ve identically

\‘: nEy + 6 = 36, (i=1, 2,...?;;?-_1)
ATy + 6 = Ze M,
and hence 72y —an) =3 (e — 1)6,.

Now let 4= nfp, where p is any prime factor of n; the coefficient
(¢ —1) vanishes whenever ¢ is 2 multiple of p, while on the other

* Adlgebra, 1, 589,
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hand (@ —~a) is not zero, because f'is irreducible, Consequently there
must be one integer ¢ at least such that #; does not vanish, and ¢ is
prime to p.

If therefore n=p*gfery...,
where p, ¢, 7, ... are different primes, we ean find integers A, p, v, ...
prime to g, g, r, ... respectively, such that 6, 6,, 6,, ete. are all
different from zero.

Taling any positive integers ¢, , #, 2, ... and denoting, as before,

the generating substitntion of G by s, we have O
8 {9;9;\_“9”—”6‘,_2 e ‘) = 5“959‘\_5’59,[”9,,_”. vy p ;\“\’
whers y=—f+AT+py g, \\' N

The greatest common measure of A, p, », etc. is prime™g'n: con-
sequently there are positive integers &, », { ete. sucj] th&t

Aftpyg i+ =1, \ "‘\ (mod =)

and if we pot B=0,0285.. O
0 is a quantity wkick does not vanish and is sskh%h&t
5(0,6-%) = 6,678

»
/

Consequently 6= REN (t=1,2 .5~ 1)
where B, is rational ; and WW\de braulibr ary.org.in
RT; = -.cl + 2%,
- g + SR G
with NN
where IZ is & non-vaplshing guantity, rational in the new field.

A\

34. Singdg (01") = ¢ 2@,", the lowest power of 6, which s rational

is detel‘lmg“a ) by the congruence
Azp=0 (mod »)

&

X \ ‘ =0 (mod n/d)

\\bére d=dv(n, ). On account of A being prime to p, d is also prime
to p, and we may write

nfd = pi
where / is an integer. If we put

6= ¢,
then &2 =T,

M 3
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where 7' is rational, and
' _ s(¢a) = ehr .

We may in the same way derive from #,, #,, etc. guantities
by, ¢y, otc. such that

Cbﬁq'e“_‘Tﬂ-: ‘Jf-’vﬂ_—'Tm sy
§(Pu)= € by, S(Pr) =€ by,

and so on.

The integer 4 is prime to p, m, is prime to ¢, and so on : hence we
can find integers & =, {, ete. soch that

LAE + oy +gvl+ L =1 (mod ?3)\
Now (0 b= by, p ( \".\
where w#w=—1+LAw+ mpy +napz + ) O\
so that # = 0 (mod #) if \«
Ty, T =18, Iy, 4L ...j\‘\

Consequently, if we put
(P:‘?ha\gﬁbp’“ff’vg---;o,i\\:
then O, =S¢ ‘“.\“
where 8, is rational AV
nz, + 6= Sip + Srpiely O A SN (1),
and ¢ , ., etc, are _ﬁ%@miggglg%%hinomial equations
‘#”\Fm:,, T’;?’ '#’HQB:TH: ey
the degrees of which are thid\powers of primes which oecur in . By
giving ¢a, ¢y, ote. all {heir different values, ¢ assumes # different
values, and if these 8a® substituted in (1), we get all the roots of the
given equation. _OPeourse the adjunetion of the quantities ¢x, ¢., ete.
is equivalent #gAhe adjunction of the single quantity ¢ which is
determined /by"a binomial equation of degree a; but the equations
which deterniiue ¢, ete. are all lower than the one which determines &,
In th#§ réspect the last form of the solution may be considered the
simpler one.  All this illustrates the fact that what 13 to be called the
\ a?mplest ” golution of an equation is partly s matter of convention.
’ Thus, again, if, in the present case, we solve the equation by s chain
of Galoisian avxiliaries, they will all be of prime degree, and for each of
them one at least of the quantities 6; must be differont from wero, so
that Weber's supplementary transformation is unnecessary. In these
respects the solutiou is the siraplest of all: on the other hand, just

because the expressions for the roots arve more explicit, they are wore
complicated in appearance.
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35. In the golution of the general cyclic equation complex roots
of unity appear as suxiliary irrationalities. These roots of unity are
themaelves the roots of eyelic (or Abelian} equations, and it is natural
t0 inquire how far the sclution of these special eqguations can be carried.

It R=thPre P,
where g, p,, ete. are powers of different primes, the complex roots of

=1 may all be expressed in the form
aa:ﬁy_ . ;ts,
where «, f3, ... k are roots of
=1, ah=1,..a%=1, A
so that it is sufficient to consider the ¢ase in which # is a power of\a\ .
prime. \

‘We shall begin by supposing that n =2, an odd prime; the equatzon

to be solved is therefore L&
J@)=wPrra? s Lt 1=0. ‘

If # is any onc of its roots, the others are #% 4%.%.. ##=%  These
may be expressed in a more convenient form as\fo ows. Letghea
primitive root of p; that is to say, a primitivh, oot of the congruence

g =L ,’.'“ {mod p}

Then 1, g, ¢*, ... g*=*form Wmﬁ@%ﬁhm%{%ﬂl@h@ﬁﬂf p, and if we

write
P ?J‘ -1

the roots of /() will be den?tgé by suffixes in such a way that
\\ e = .
In this notation, dybry integral function of the roots which is
unaltered in value .by tthe substitation

'\" 8={rrs.. - Ty_1)
is rational.

The fm@n in question can be reduced to the form ¢ (7}, where ¢
is a ratigfal polynomial, If the substitation s is applied to the orlgmal
form.@f \the function, its effect is the same as changing 7 into #f in
& (m),) Hence if A is the value of the function, which by hypothesis is
unaltered,

A=d@)=¢ () =d @) =...
=g {r)=dr)=..
Pl_l Br)+dlr)+..+¢ {(ro_il,
a rational quantity, becanse symmetrical in the roots of /.
3—2
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If (w-#) 13 a factor of the total resolvent of /' and we put
& (v,) =542, the factor
P = (0 -0 (0 —) . (0-1y0)
will be rational, and moreover it will be irreducible, hecause otherwise
there wonld be an identity
—Haw + Lt == w) (2 —,) (v —wg) .
AR AR T TPRTY PR PG ET N
leading to Pyt T F gt =0 N\
with @ rational, and less than (p~1) terms on the lelt-Langd.side.
This is impossible, because £ (&) = 0 is an irveducible equatidn™
Hence ¢ (v) is-a primary resolveut of £, and the Galolglaw gronp of £
iz (1, &, &% ... 872}, go that f is & eyclical eguation. ,,Wé"‘anay proceed
to solve 1t elther by forming a chain of auxiliary o 1éfions, the degroes
of which are the prime factors of (p — 1), or elsg B ddjoining a primitive
{p~—1)th root of unity, and proceeding as m\h-ts. 52, a3.

36. An example of the firat methq\l (for p=17) has been com-
pletely worked out in Art, 28, Inf the general case, lot p—1=4¢f
where ¢ 18 & prime. Puiting - N

w, dbla 1 g%‘aly ffi”é i T e
2 will be a root of an auxiliazy equation

\ @& (CL) 0
with rational mtcg{‘“{l wevefficients and of degree ¢
It f=gh, where ¢ 18 & prime, we put

'\. Y BEr g+ Toyges1+ -+ Fpages
and now &1& & root of an anxiliary equatlon
O b(B)=0

of d}ree g, with eoefficients which are rational polynomials in «. We

\:pwceed in this way until all the prime factors of (p— 1) are cxhansted.

A case of historical interest is when p = 17. The auxiliary equations
are (taking 8 as the primitive root of 17)

o2 ta--4 =4,

B—af—-1:=0,
2y -28y+{af-a+B-8)=0
Fowd+rl=10

* Waher, dlgebra, 1, 536; or my Theory of Numbers, p. 186,
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All these equations, except the last, have real roots, and o, 8, y, 8
can all be obtained explicitly in forms containing real arithmetical
surds; thus we may put

-1+ /17 -1 +.J17+ J(34—2\_f17)
a ft .7 3 B = N - H)
2 4
but the expressions for y and & are too complicated to bo worth writing
down.

37. o solve the equation considered in Art. 28 by the method-of ™
Art, 32, we put \
=r+ % - o + art — PP —5F ’\
{~® being a primitive sixth root of unity, and the cyclical orde‘f of tho
roots of f being r, #% % 2% o #° when we take 3 as the pnmmve root
of 7). It is found by actaal mnltiplication that \\
6.0 = (5 - Bo) (¥ + 92+ 1t =77 — 1 NS
thf =—7(16—3%e) =(1+ do) (2{(},&1

where it may be observed that in fhe field (m)\{he norm of %13 7%, It
raay also be verified that P\%
__—_u_, ., 8+3w .\ > 18+1%w
6="2208 6,=S = AN B= -
6 - é ﬁww“ﬁ&hraﬁbgl ary.org.in
“Tlage’ a0l ’
s0 that fin alIy Q\
___+_1 9 *s_+_@63 18+190 o, 55+ 39a

7 i

38. The gim})fes’c way of calculating the quantifies 6; iz the
following. If’%"is any one of the numbers 1, 2, 3, ... (p 3), the
product ;\18 not rational, and its quolient by 6n+1 is equal to
the coeﬁiﬁent of r in the product 6,8, after reducing it by first
repla@ng all powers of # higher than #*' aceording to the formula
8= r® and then replacing any rational term @ by its equivalent

\‘alu
—~a{r+%+ . P,

Now 0,6, = Jendatrindogate (g h=1 2 .. p_1)
The only pairs {#, b} which contribute fo the coefficient which we wish
to find are thosze for which

a+b=gp,
a+b=p+1
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The second set contributes, after the first reduction, & coefficient of
r which ig

Seindathind [_'p+1—a}’ (a= 2, ... p_—-l_)
the other set, after the second reduction, contributes
— Selndethind{p=a) (f_‘]‘; =1,2 F 1)
Since ind (p—a)=ind (~ a)
=}(p-1)+inde, N\
the sum last written A o
o
a=p—1 \
= MY B htihinda _ g : ;;'\
a=1 ; W
Slﬁk I &N N
and hence g = Jelndethind(pri-a) ,(w- 2, 3 .p-1)
hia A\
On the other hand, if A=p — 2, then 6,4, is mtm’nal Its value may
be written in the form AN

/] gp o= Sendat{p~ s)mé\b}su.b
= Seinda- ind‘bqaﬂb

sinee =1, Now if we put ﬁ.‘a (~m0d P we obtain the equivalent
eXpression

wwwdb{a“fiiémwmﬂﬁ;m B ¢=1,2, ..5-1)
The terms for which t=g=1 coutribute
-1 emte-_p 1,
for any other va]r}{‘g of ¢

»

O A L I
hence t&é\,ﬁz},]ue of all the remaining terms
.\ t=p-2
”’o =—1 E Ell‘ldiz_l;
. "\ . t=1
\ 'and finally 60, _i=—p,
This, together with
6.6, m:§_1 (19841 i0d (241~} r—
9}:1-1 w2 ¢ ! [16):], 2,.“?9_3]
enables us to find the values of By, by, ... 6,_, with great facility. Of

course the indices of the powers of ¢ are reduced at the first opportunity,
to their least residues, mod (p— 1.
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As an example, when p =17, we construct the table of indices for the
primitive root 3 :—

|
" i 1 23456
ind @ 6 2 1 4 5 3
ind {8 —m) 35 41 2
and henece find
?1':2_654-]_—}- ] 1 '_3 ’.\‘.\.
92— e+ l+f=0+e \\ ~
6,4
Sl=er et ltete=1-2u, A\ )
3 p°¢ ?
k. W

6,6, 'S
-a—fleﬁ+€4+€4+€2+és=—1+2m,
4

A\
6.8, s % o
6—5=es+e + €'+ ¢ +65=~—“3x\-sw,
6.85=—T.

By multiplication we find that ¢ »

6 =— z\/(-\lw_:v ;&ﬁm‘gﬁy.org.in
= —7 (16 ~ 39w)
ag before; and all the regilts of Art. 37 may now be obtained with

s \J

a8, \\ i

39. Bupposed m:;w‘that- n=p°, apower of a prime, The primitive
nth roots of ux];@:yfiﬁ this case are the roots of the equation
f@;ﬁ%{-ﬂ% TN g T L T 1 =0,
Whic@,‘is irreducible, and of degree p*(p—1). It is also eyelical,
becatse there are primitive roots of p* which can be used, as in the
“tado when o= 1, o fix a cyelical order of the roots, and the arguments
of Art. 35 may be repeated. The indices of the composition-series will
be the prime factors of (p 1) and also the prime p repeated (2 - 1)
times. Hence if we solve the equation 7(#) = 0 by a chain of Galoizian
auxiliaries, (« — 1) of these will be of degree p, and (Artt. 30) no purely
algebraical solution can teplace these auxiliaries by others of lower
degree.
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Finally, if
B=prY .. W) =p" (p-1) P (g~1) .,
the primitive mth roots of unity are & (n) in number, and they may
be determined by as many chains of auxiliary equations as there are
different prime factors of #. The degrees of the auxiliary equations
are the prime factors of ¢ (n). It should be observed that the Primitive
ath Toots satisfy an irreducible equation of degree ¢ (n), but this
equation is not eyclical, )

A specially interesting case is when the auxiliary equationglade all
quadratics. The necessary and sufficient condition for this sthat ¢{n)
should be a power of 2; this is equivalent to saying that. ™

n=2%gr ..., G\
where p, ¢, r, otc. are different primes, each of the fofrm"Q“Ur 1. When
# is of this form, and then only, a regular poly’é@h of n sides cun be
inscribed in a circle by means of the rule and ¢ompass ; because the
complete solution of #%=1 leads to the determmation of cos 2xfn and
sip 27/n, and conversely, while ever % ‘éohstruction with rule and
compass can be put into an analytiedl foim which involves only Hnoear
and quadratic equations. This remarkbble connexion between geoweiry
and analysis was discovered by Genss.

The values of », below 106, ji’wrlxilqﬁ are of this special form are

wwwi.dbBraulibrary orglin
5 4 5 6, 810, 12, 15, 16, 17, 20, 24, 50,
82, 34, 40, 4851, 60, 64, 68, 80, 85, 96,

Of these the only' ones which are not considered in Kuelid’s
Elements, or at Teast easily brought into connexion with the cages
(n=3, 4, 5, 6)15) which he does consider, are 17, 34, 51, 68
and 85. &

L W



CHAPTER III

ABELIAN EQUATIONS

40, A aqrovp is said fo be Abefian when its elements satisfy the™)
commutetive lsw of multiplication: that is to say when EY )
s and & denoting any two elements of the group. An Abelig Bqua-
tion is one of which the Galoisian group is Abelian. Cyclical @yuations
form the simplest class of Abelian equations : it will b@&hdwn in this
chapter that every Abelian cquation may be solved\'by means of
anxiliary gycheal equations. AN

It will be supposed, in the first place, ¢habs the given Abelian
equation is irreducible. This being so, it8\@aloisian group & is
trangitive, and will contain & substitutiony % which converts #; Into
any other assigned root a;. N

The substitutions of & which Qea‘f{r‘é{'.%llb{fﬁla,'f%g§]§‘d'5fo‘f§§‘é“sub-group
of @& Let o be any one of thesg»: then since s, changes & info o,

87 oS (ws)"{-'*’f-‘i (z)=5 {0 ()=,
that is to say, s, "'os; ledkes @, unaltered. But since & is Abelian,
siles;= 87 80 = o ; condeguently o leaves every root unaltered, and
is the identical snbstitution. It follows from this that & is simply
trangitive, and th&‘g bz, 2s, ... 2, are the roots of the given equation
\‘ G =(1, 8%, 8, 1 5n)

where s, is.$he definite substitution which changes #; into 2,

Mqtgéﬁér the adjunction of @ reduces G to unity: consequently
/"y are expressible as rational functions of @, and F(z)=015 a
norhdl equation.

Let the rational expressions of the other xoots in terms of 2; be

#y=0y{my), 2y=0s(0) - @a=0s ().

To these equations (Art. 17) we may apply any substibution of &:
thus from 2=0; (@), a="0(a)
we deduce g =0,(my), s;=0;(2),
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But s =4 sl = s {yml = s
consequently 8; (a) = 6; (),
that Is, 816, (2} =6, {0, ()}

By applying a Galoisian substitution to this we infer that
6‘!3 {91 (xl“)} = 6,‘? {Gi (wk)} [?:) j) &= 1) 2) .. '?3-1
with the convention that 0, () = .
In other words, the rational function
6.16; ()t — 8510; ()}
mush either vanish identically, or have a numerator which is digig’fhle
by F(z). In general, it is the latter case that occurs; so mwo.mdy
write, to express this fact, ~\ Ny
066 0. =0. MR ()]
Conversely if the roots of a normal equation f(m}: 0 can be ex-
pressed in a form @ = 6; (2,) such that these congraences are satisfied,
the Galoisian group is Abelian, For we have :&]\}Ehmetically

6,16, () = 8, 16, (GO

that is 6: (2)= 6, (@)

but since ey = @y=0; {m), &Il:{?g .;»}-"xl =a; =0 (1)
it follows that s}(&i?ﬁljibﬁff&ﬁlj:m's?(%rﬁ)lg 0;(z);
consequently 8%, x;) =5 (800}

and in this we may Ghan#ﬁ':'x\l to a. Finally, then, s:s, = gs; identieally,
and the group of thé\equation is Abelian. It will be observed that
this converse theorém is true whether /(@) is irreducible or not.

[

4l. Theysimplest way of expressing the elements of an Abelian
group is ¥yywhat is called a basis*, The elements s,, s, ... 5, form a
basis pfké“when avery element of (7 can be expressed in one and only
one Way in the form

m:“\’ soeY st (2 €my, yZmy, ...t < my)
Nith &, # .- ¢ positive integers, and m,, my, ... m, the least positive
integers such that

HM= 5= == 1,

If desirable, the base mey be se chosen that m,, ms, ... 1y ate
powers of primes; of course their produet is equal to #, the order of G.

* Weber, dlgebra, m, 58-45,
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42. No generality will be lost, and the notation will he much
simplified, if we suppose that the basis of & consists of three elements
s, ¢, u, of order a, &, ¢ respectively, so that abe=p, and all the
elements of & are expressed by

S, (iga jeb k<e)

Let p be any prime factor of a; then the substitations for which,
in their bagic form, ¢ i3 divisible by p form & self-conjugate sub-group
of G, the index of which, with respect to &, iIs p. Since p is prime,
this is & maximum sub-group, which we may denote by G, and a
rational function of the roots for which ) is the invariant groap will
satisfy & rational eyelic equation of degree p. By adjoining one zdoby
of this equation, the Galoisian group of f sinks from & to ;. ’

Suppose, now, that ¢ is & prime factor of a/p: then the\substi-
tutions of G which, in their hasic form, are such that #ig divisible
by pg, form a maximum self-conjugate factor of GI,"%?h?ch We Ay
call Gy A fanction for which €% is the invarfabf*group in the
enlarged field will satisfy a rational cyclical eqqa@oﬁ of order ¢, and
the adjunction of ene of its roots reduces the grgdp of / from &) to G;.
By proceeding in this way, we can exhausth\all’the prime factors of &
and redace the group of 7 to those substitttions of which the basic
forms are #u¥. If p'is any prime fadbor of & wo have a group (¢u)
with j divisible by 2, and a cotrtSpEhRAY R E a1y of degree
and 5o on. The group of £ is_fnally reduced to unity by a chain of
auxiliary eyclic equations, tygdegrees of which are the prime factors
of »: that is to say, if n=3°9% ..., there will be a auxiliary equations
of degree p, 8 of degree },\y of degree r, cte.

43. Assa sirppié allustration, we will take
,j\’f Fl@y=a-af+ -2+ 1=0
the roots of &hich are the primitive 20th roots of unity. If we arrange
the rooty€oMhat
y \‘ > Br=7 Ey=1%,  @y=v1,  @= oY
\M\. 4 Zo=1T ap=et = o=,
the substitutions of & are

a=1,

8. ={(1243) (568D, 8= (1342) (5786),
5,=(14) (23) (58) (67), s =(15)(26) (37) (48),
sy = (1647) (2835), 5 =(1746) (2538},

55 = (18) (27) (86) (45).
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If we apply these to the fanetion given by
BT Bt Tyt Byt 2
the only new function arising is
o= P W+ &+ By =~ 0.
Hence %, 15 a root of a rational quadratic. To find it, we have,
with the help of F(») =0,
. h=ret T 2P =27 S 20

P = (2 — 0+ 2%z 5 [mod (r)l\
=5
and the first anxiliary equation is < \\
g2+ 5=0. O
If we now put R "’g
S=d =T+, L= +wq 7* +
we find that 2y + 2. =2, 2%=—1, so that the second auxiliary
eyuation is N
—hn—1=0 \ &
Finally @, and o, are the roots of A&

&= Ty — ,1 "(}
By actually solving the auxﬂmrws e see that we may take

it o ST TR s Jo)sicye )

and as a verification wwq‘bberm that the expression last written is
exp (67420}, one of flie Yrimitive roots requived.
The group & sy this case dibasic: if we put

AN/ 8=28, (=5,
then (s, ) is/basiz, and the basic representation of & is
’§s\ =1, a=s &=§8 §=§
A S=5% =85 &=8§ &=i
itk =1,

VTt is e very remarkable fact, discovered by Kromecker, that if the
coeflicients of an Abelian equation are ordinary real integers, its roots
cen he expressed as rational functions of roots of umity, with real
rational coefficients.  Proofs of this theorem have heen given hy
Weber and Hilbert, but they are too long and difficult to be re-
produced here,



OHAPTER IV A

METACYULIC EQUATIONS
QUINTIC AND SEXTIC EQUATIONS A\

P

44. Suppose that p is & prime number, and thqtg{cjés any one of
its primitive roots. The numbers (1, 2, 8, ... g orm a complete
system of residues fo the modulus p, and we.can form & group of
permntations of these numbers in the followigg manner.

Let s denote the operation of changing\dityresidue z into z+1, and
reducing the result to its least positive résiftue, mod p. Thus

s(p-1)=p, s(mh’s(1)=2 ete,
and we may write wx.fwfﬂ‘braulibl'ary.ot'g.in
$(L, 2, s )= (2 8, oo 1).
et # denote the ope ?0}1 of changing # into gz, and reducing the
result to its least pos'ri'i\ié tesidue, mod p. Thus
t‘('l, 2, "'.3"') :(9{! 2g,..p— 1 P)
Lvidently 848 cyclical permutation of order g ; gince
x\;\ th(llgﬁ P):(¢: 29‘?" f)):
and g" 1%(3&10& p) only when 2 is a multiple of (p-1), it fo]_lows that
t is ofyorder {p—1). It will be observed that ¢ does not displace p,
,a@&‘;ﬂisplaces the other symbols cydlically.

O

Tt will now be proved that the p{p—1) operations

& m - i’ 2 - 1)}
form & group.
We have ()= (Pe)=gz+e
Py

provided that I=eg*
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Giving I its least positive value we infer that
5 (2) = 887 (2),
and S S =0, 150, 1 =TT,

Rince @, b, ¢, d may be any four integers, this proves that the
operations form a growp. For convenience, it will be called the
metacyclical group, mod p, and the reference to p may be omitted
when no mistake iz likely to arize.

™\

46. There is another way of regarding the group, more conveniehi

for some purposes, and representing the group as & seb oi h;mar

substitotions. We have O
S (Z) =g (2 +a) (‘.}" '
=lz+m, K o,
provided that g'=l ge=m. QO (riod p)

If # and y are given, the last two congsitesices determine [, m
uniguely to the modulus p.  Conversely i€ “m are given and I is
prime to p, z and y are nniquely determived to the moduli p, (-1}
respectively. Thus the group may b@ errefsented by the substitutions

I=1,2,...¢ 1
W dbratﬂﬁbﬁrﬁ”&l "g.An P ):I

m=1, 2,
and in this form may be called the integral linear group.
The group s doub]y ~tt~acn31t1ve that is to say, there is a definite
substitution which m{ rts any two given residues o, 8 into any two

other given residjes ¥, 8. 'This follows from the faet that the
congruences . ¢~

,\“\ letm=y, B+m=8 (mod p)
admit oiQn&L ‘and only one solution, because
O (a—B)l=y-3,

and\{a 8), (y —38) are both prime to p.

VAR an example, let p=7, g=3, and let it be required to find the
\oper&tlon of the group which interchanges 1 and 2. The congruences

l+m=2, 2U+m=1 {mod T)

lead to =6, m=3, and the required operation is (z, 62 + 3), or, in the
other notation, s*.  As a verifieation

£(1,2, ... 71)=(56,1,1,2 3 4,
(56,171,123 4=(21,1,6 5 4, 3).
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46. It has been shown that
2= ¢,

where 7 iz different from ¢, while the index b remains unaltered. It
follows from this that if 4 is any factor of (p—1), incleding unity and
(p—1) itself, and if p— 1 =de, the operations
=1,%..p
Sm tﬂd [m Lt

w=1,2..¢
form a group of order pe. ¢
This group is self-conjugate in the metacyelic group, because thers

is an integer ¢ such that ¢\

NS ©
.‘s‘“’ﬂb i twj . é—bg—a- — sﬁ tb-g—’mi—b — sf- t-nd,_ ,:‘. N/

Let us put _ 7
L W
_’p(p_l):/ia p=l=pigi=phpPsgs=-- Zp-l’??'}.‘.p,.,
where pi, pu, - py are the prime factors of (p\).  Then we have
2>

a composition-scries 4
Gh: (}pgn G'ﬂq?: A GQ%-;H"G'D: I—:
with indices Pus D3y BT
the notation being such th&twﬁﬁﬁégmﬁbﬁgpygpgrnof which the
operations are N\
<"8mgﬂ-vmﬂ"‘pi [m = 1, 2, . P
: n=1,2 ... q

In particular, G, mq‘a}rs\tile eyelical group (1, 8, & ... 7).

47. Supp ag fow that we have an equation of prime degree, and
that its roetsldre @, 23, --- @y. W e obfain a group of permutations of
its roots\\ﬁyﬁlmplgring to their suffixes the operations of the metacyelic
group;ﬁ: If this i3 the Galoisian group of the equation, the equation i3
jgf?ﬁf}’to be metacyclic. An equation of this kind can be solved by
a\chain of auxiliuries, each eyclical and of prime degree. That the
suxiliaries may be taken of prime degree follows from the eomposition-
series just given for G : that they are cyclical may be inferred from
the fact that they are normal as well a5 of prime degree, or again from
the fact that Gpe, -+ Gg, is holocdrically isomorphic with the eyclical
group _

(tt:, tm, . t{pi—ljd)’
where d =pips ... pis (f. Axt. 230

~
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42, Kronecker has put the solution of a2 metacyclic equation of
prime degree into & very interesting form, which iz analogons to that
given for cyclical equations in Avts. 82-4. Before reproducing it,
a few explanations and lemmas will be necessary,

As in Art. 82, we take ¢ a primitive pth root of unity, and write

3;.,:;2?1 + ekx2+ +£[1"_1jkﬂ/‘p‘ U;" =1,2, ... (_p— 1;']

If 5, # are the generators of the metacyclic gronp,

${Bi) =20 =7H0,
ag before: to find the effect of 7, wo observe that

Ekﬁ(gk) = E‘E}ﬁx{ﬁ . 2 (e.!;.?e)m' Q’gi'— E_r;hak?“ \’ \\

2 k3 £ 3

where } is determined by the congruence ~\°
gh =1, D (med g
leading to hzgt—? ’\ (mod )

With this value of % (0= P-14,, \
It is eonvenient now (cf. Art. 86) to mtr%qN a slight change of
notation. We shall write
Ji=0y | O [a-—O 1,2 ... (p—-2)]
on the underst‘mdmo* that 6, means Bp) Where » is the ]edst positive

residue of ¢* to the modulus p. M also wake the convention that
for any positive integerg gorgulibrary org.in
0N =5,

provided that Y ,\ m=n. (mod p—1)

Thus there are only@*— 1) distinet quamtltles 9, and these are the
same as the quantltgeg 4, in a different order: in particular,

,~\ G-d=3,., K=o,
The eﬁ"ect&"ii% and ¢ apon &; can be found from previous formula :

thus \

R s (3=,

N E{3)= W -gfy,
) . i, 1
'"\}Let s now write

\ Jo= 5N A=H%0, e Ji= 8,8

Then S(f ) -f:&"
and t( f) gc,r,:ﬂ ) _g[gi—l_gi) 3{__{

=344 "'fiwh
with the special case
¢ (f o) zfp—z.

g: e f;i-z = "911——1*91;—02-
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Consequently any rational cyclical function of £, A, fi, oo fo-s18
unaltered by s and £: the quantities f; are therafore the roots of a
rational cyclic equation of degree (p—1). The change of ¢ to ¢
converts #; into £y, ; hence it follows that when the cyclical equation
sforesaid is reduced by means of the equation satisfied by ¢ the
imaginary root of unity will disappear, In other words we have
identically, after this reduction,

(f~Fod (F=S) e (F—Fod) =P [P 4 o+ gy,
where 2, g, ... By 818 formally metacyelic functions of &, 2, ... mp,‘
and have rational values when the given equation is metacyehie, ¢\
Supposc that we have a set of quantitics ¢y, ¢1, ... hp_zy ehchof
which is rational in ¢ @, 23, ... @ and which also satisfy the following
conditions :— SO
(1) s(éﬂ; fr’]l) b ‘f)p—-E):‘IﬁUl ¢1, e ¢p-—2; '»‘.\.\
(2) t(‘;’ﬂr ¢’1: "ﬁp-ﬁ):qsp—m ‘#’Ds ¢1: ¢p—a; ’
(3) the change of ¢ into < produces the sa@éyclical permutation
ag 1, LV
(4) cyclical functions of ¢, 1, ... cbj;q,‘s:re metacyclical functions
of #,, &, ... &, and can be expressedyn a form which is free from e
Then by arguments precisely sithilar to those employed in Arts. 7,

S

24 it may be proved that wyWw.dbraulibrary.org.in
=R (), (i=0,1,2 ...p-2)

where R is a rational fu;z@i't;bn free from ¢ and the coefficients of the
powers of £, are metacyclic fanctions of @y, @5, .- @p.

49, From’ t]s;é’équations which express the quantities /; in terms
of the quautiﬁjeé 9, we can eliminate all the ¥s except 3 in the
following foatmer. Raise the first equation to the power g°7% the

second £onthe power "% et and multiply all the results together:
obsex¥ing that 9, - %, we have
N
"N L2 LA T LN ; SNy Ao (1.
The primitive root g may always be chosen in such a way that
Fr—1=plp-1)
where % is a positive integer. Supposing this done,

3700 o 38 = ($4P)P.
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Now the quantities %%, $,%, ... 5% satisfy all the conditions
enumerated In the latter part of Art. 48, so that we may put

8% = BFY oo 2),

where R is a rational funetion of the nature explained above.
The positive integers #y, 71, «.- #p-g can be uniquely determined so
that
PGP+ oy g7 = Qoosp + Ty, efC.

with O<ry<p (i=1, 2 ___ﬁ).\
and the quantities ¢, positive integers or zeros. .
If, now, we write, as an abbreviation, R\ A\
K= R(fn).fnq”‘zfﬂ” 3 ... f “_3 .............. ’ - {3),
we obtain from (1), after multiplying both sides by 3,/%°, .8 "
3¢ = Kp s fros o oo o s \* (8

From this it fullows that

= K2 f i o i (5),
where X is derived from K, by changmgﬂ}f“ Suy e into £y Fin,
Siras oo Tespectively.

The relations (1), {2), (4), (u) are aI}reduclble to identities, whatever
2y, &, - &p may be, solely in v1r1m§ of the equation satisfied by e,
and the definitiong.of, ﬁbrjulﬁgﬂmlﬁnag ifs, .- &p are the roots of a
metacyelic equation with numerical coeﬁmults, Fos Jir v Jy—s are the
rootg of an auxiliary cyclwaJ equation with rational coeﬁ‘mleuts By
the adjunction of £ Q{oﬁher roots become rational, and finally, if

we pub
' = Al
a definite pth rom‘: of fi, we have

px\—'\- a6+ Eh=—0+ EK}T-'}J-H’.’%ﬁ e Ty Trapoae

H, mkhe expression on the right, we give to each quantity = any
one of its p different values, we only obtain p different expressions on
'the whole : thus the formula may be used to determine any root of the

\glﬁren equation, and it does not lead to any value of 2, which is not a
Toot,

50. When p=3, the metacyclic group consists of all the per-
mutations of three things: hence the general cubic equation 18
metacyclic, To solve it hy Kronecker's method we take g = 5,

F=a+of+ oy, G =a + &’ + oy,
Jo=hd, JSi=deh



49, 50] METACYCLIC EQUATIONS 51

With the notation of Art. 4, we find that #,, f, are the roots of

Bfr— (A28 F+B=0 coeoeeievinnnn. {1).
Moreover JEA =%
D ¢ U (@),

and we have now to express 4 in terms of /. To do this by the
general method is & good exercize; but it is simpler to proceed as
follows, We have

SR8 4 o, N\
Aof=S gy T O
hence Al -8 = B (A -L)=B{H+/i-2) \ e
= A= 2P -2, A
T pH " 4 "5
and 8- (939 + 4y= 2L ES )
If we write A=t fi=1t A\

we obtain from (2) and (3) RN
30 :ff——J (‘;ig — Bs - Bﬁﬁl}a Taﬁ'ﬁ.’ '3'1 —j; (A%SES- Bﬁﬁ)a 71970.
_:j.d N \ Q} Ao
To put the solution into its sirnplggﬁ form, we must express the
multipliers of 27, and ', as linear faactions of £, and /; respectively.
The final result is i 7 (L’& ﬁgﬁﬁigrﬁiﬂibmw‘m'g‘m

H
To Ty

R
BB f - A2+ B
sli\‘g'_&“.f%ml 2Ty

.~~.'?»z‘=—c1 + 9+

This gives jt-hé’gollution in a definite form whenever the values of 4
and B are boﬁh.\ﬁﬁerent from zero. When 4 =0, the expressions for
9, and 3, Asdwme the indeterminate form 0/0 : in this special case the
cubic hasthe rational root —a/3, and the others are the roots of a
ratipnad quadratic. When B =0 the cubic may be written

™ (3 +a)P + el — 2Tcs,

and is cyclical. Finally, when 4 = B =0 the cubic has three equal
roots.
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QUINTIC EQUATIONS

B1. It is an interesting problem to find the most general form of
& metacyelie equation of the fifth degree. To do this, we must first
find the most general form of a cyclie quartic.

The roots of such an equation are, with m = ¢ + &, so that

a+ . Jm

Nm+aJmy==3 = /(m—a Jm),

o=c+d Jm+(e+gfm) Jim+oym=h(z), O\
w=c~d Jm+(e-gJm) Jim-aym)=kiz),
m=c+d Jm~(e+g Jm) J(m+a Jm)=Fk(z)y N\
#y=c—d Jm—{e—g Jm) J(m~a Jm)="h (&
Elimination of the radicals leads to the most gen'éfél cyclic guartic
in the form
(= e} — 2m (& + & + mg® + 2aeg) (= .c)"\
—dmd{a (e +mg*) + 2m-eg{},(w ye) + midt
- 2m°d* (& + mg® + 2aey) +amb? (2 -mg’ = 0
Nowlet £, I, , p, ¢ be any ratiQﬁal' quantities; and let
W dbrauhbwm g.in (¢=1,2,3, 4)
J&)= km3+3x"‘+m+p, s
E=f (5'1) nirgtryin ‘t.){fz';) T T
‘\ . +f (-%J LT P f (@) rirtrlte + g
Then 2y, @s, @,, @ beivg the roots of a cyclic quartic as previously
cozstructed, 5\:\1]1 be’a root of a rational quintic which is metacyelic
in the field (a, &, c, doe k. ln p q).
It is &upﬂa,b\d here that the notation for the roots of the quartic is
80 arr&ng@ that its Galoisian group consists of the eyclical permuta-
tion (Jé;bnxaxa) and its powers. This having been done, we may give
sach-OF the quantities 7, all its five values, without obtaining more than

\ﬁh\m values for & There will generally be five different values: but
there may be repetitions for particular values of {a, b, ... g).

52. The general quintic can be transformed, with the help of
solvable equations, to the standard form
Py O SN )

and if this is metacyclic its roots can be actually found in the following
manner.
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The generators of the metacyclic group may be taken to be
s=(12845), +=(1248)(5);
and if we put € = giril5,
b= By B+ Ty + Tyl By L T,
it is found by actual calculation that, in virtue of 3a;=328=327=0,
0,83 = afB == Buflgererrereeeeien e @),
8,20, + 0,20, + 020, + 630,=0 ... (3),
8., 6, ete. having the same meaning as in Art. 48 and elsewhere. If
we write, for simplicity,
: o= O\
and eliminate 6,, 8, from (2) and (3), the result may be writtendn, the
form \+
0 02 (008 + (8207 — a8 (836 = 0. )
This is satisfied identically, and in the most gengn@l ‘“nanner, by
putiing ’

u=1{-1)# N
05— 18 (1 + 1P (- 1P £ 0 e (4),

6,56, =1 (12— 17 NN
2 and # representing two independent erarﬁeters.
Now one root of the q“mt’\‘&?‘l’svﬂi‘%byibrary.m-g_in

Ba=0+6,+ 0,038
F(fg—l‘jsi‘ A H{e-ne
_73\ - FETE Fog R :)
by means of (2} and‘(ly\ Eliminating ¢, from this and the second of
equations (4), we find)that

Fr—1(P- e @+ -y (P-d-1)z
N (e 1) (220 - 62— 220+ 1) £]=0 ....{6).

=61+

&/

Tt willnow be supposed that { and # have values guch that the
equati(h}s (6) and (1) are eguivalent: thus
~O° HE-1) @+ -1 ~4l-1)# +1250=0 ...(T)
\V L(I = 1) (* + 220 — 611 - 220+ 1) £+ 81258=0 .....(8)

1t remains to make use of the fact that (1) is metacyelie. The gub-
stitution s makes mo change in ¢, and in virtue of Zzuz=0 the
suhstitution # converts ¢ into —¢: consequently ¢* is & metacyelic
fanction, and its value is rational. Denoting it by v, we deduce from
the first of equations (4)

(12— 1P = Byeinnnnvensnsnecensensns (S
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and from this and (7)
Y@+ - 1) (B~ 4l—1)+25a (2~ 1) I=0,
The solution of this is given by

Y+ (20e - 3y)y —dy=0
gg_yl_lzo} .................. (10).
From (7} and (8)
po 2P I-DE-4-1)R 1)
(32+1)(gi+2233_6£2_22z+l}a ............ ,‘"\

and from (4) n L
PRIl i R Vi et 18 VL (R0 VG T oT

1T (F+1P (4 220 — 605 =220 + 1P & \ '
Equations (10}, (11), (12) and (5) contain the comglete solution
of the problem, supposing that the value of y is known's nd it will be
observed that, in accordance with theory, the degr®s)of the auxiliary
equations are 2, 2 and 5, the prime factors of thevorder of the meta-

eyclic group. 7.\
The guantity y is & root of the equatiom®
(v — o' (¥ ~ 6oy + 230 = 558% ..o (13),

80 that the quintic is, or is not, me‘tjéfcjré]ic in any given field sccording
as (18) has or has wnob: slledidpberyobrininhat field, If the field is
(o, 8), we must have rational dnantities A, p such that

iw\"i/ =Aa, f=pu;
' 4 }

2= ‘5%}1 A= 550
QAR 2sy TR (e —env25)”
It may be Ohgéived that the solution of (6) assumes a very elegant
form if we pub
AN\ 1= )
where ' (2} is a lommiscate funciion of 2 ; that is to say, one for which
’”\\: "..\J' . gs = O.

N 53. The condition thet a general quintic may be metacyelic has
been put into an invariant form by Mr W. B I Berwick, and, with
his permission, the result is given here, Let J. . 0, I be the invariants
which Salmon denotes by those letters (H. 4., pp. 928-31); and let

J=5.J, E=%.5. K, l=—ov. 5 I

wWhenece

* 0. Bunge, deta Math. 7.
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If a4, za, ... 2; are the roots of the quintic (e, b, ¢, d, &S &, 1)=0,
and we pub
¢ = o {{oy — & (2= &) (@ — @) (@ - @5 (5 — o)
+ («Ts - xa)g (ﬁ’s - ﬁn)g (3'5 - %)2 (-’»"’z - -’34)2 (24— xl)g}s
then ¢ is a metacyclic fanction of the roots and satisfies the equation
" + 107¢° + (855 + 10%) &*
+ (8057 + 305k + 100) ¢*
+ (557 + 307 + 258 + 5050) ¢°
+(267° + 107k + 447%° + 597° + 1441} ¢ .
+ (579 + 2077k + 205 + 20541 + 250%) = 0. & A
So the required condition is that this sextic must have a rationalroot.
This resolvent can also be readily used to distinguish the subgroups
Tu=ls, 2, Ti={sg \\
of the metacyclic group. FPutting \¥;
xi=a (@ — 2. (@ — @y (25— ) (s — o R (;% -z,
Xo= 0 (2~ a5 (@5 — @) (@5 — @, (“""g,, '*’:'"i) (@a— &%,
when ¢ = y, + X i¢ 8 rational root of the resoh;ar@t., %, and x,are the roots of
X —gx+AZ0.~
This quadratic must have rational ropts when the group reduces to Ty,
and it further reduces to Ty \ﬂwwx{’obh'i)@yhhrmyl@nﬁjsqume.
siﬂix'ﬁo EQUATIONS
54. There are fivethain classes of irreducible sextic equation,
falling into sixteen sibiclasses due to the transitive groups:
:‘:\ ) I- H’?‘JU) I‘:]GO'
o I Hixs P

\:'ﬁ."' TIL G, Ty Gios G-
“ :’.\ I\T' Gﬂ, G‘Bi: HMJ I‘_ﬂd: 111‘3'
SN V. G, 7, Ce

/N

T this scheme the first group in each line contains the others as
ngroups, T, contains even permutations only, C; is eyclical and H,
is simply isomorphic with the symmetric groap of degree r. G isa
sub-group of both Gy and G, while Ty, His, Gy Gis aTR the only tran-
sitive maximum sub-groups of Hp. Due to these maximum sub-groups
there are four principal resolvents of degrees 2, 6, 10, 15. At least one
principal resolvent has a rational root when the group of the sextic is
uhsymmetric,
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1. H,,and Ty, The General Sextic.

When no one of the resolvents of degrees 8, 10, 15 has a rafional
root, the sextic is general in character, its group being fp, or Ty,
according as A is not or is a rational square.

55. Before examining the other classes of sextic equation in detail
it ig necessary to prove two theorems on the structure of the roots of an
irreducible equation @ (#)=0 of any degree ». A prineipal resolven
®(8) = 0 of @ (#) = 0, due to the maximum sub-group 27, is, in general
reducible when the group & of the equation is a sub-group of ML \Au
trreducible factor ©, (6) of @ (6} will be called an & redusaéle msoiueﬂt
for G,

We take a, 8, ... « to be the roots of «(a)=0 am{ 61,' 8, - Oy
rational functions of these roots to be the zeros of anfueducible resol-
vent for the group G of order nk. Lach permutatienJof G corresponds
to & unique permutation § in the r ¢'s and the la»tter permutations may
or may not be all distinet. \ &

TasoreM (1). When no two of the nfe.pefmutat-ions @) are identical,
these permutations form a group sirﬁpiy isoworphic with &.  The
permutations of & which do not cha;nge e form & sub-group (7., and
the % equivalent penﬂ\{mdlmsqhhiw'&’ srfme a group . of the same
order 2. A symmetric functioing (8, by, ... 8,) of the linear forms into
which

clb +eby + .+ o f,
is changed by the p&mutatmns of &,', when expressed in terms of
e, B, ... &, is unaltered by the permutations of 7,. The function ® can
always be g0 chbgen as to be different in value from its conjugates. In
theze clrm;Q@&nces a and ® belong to the same group G, and

'\s“' GZRI (G) U-=_R (@))_R(SU 93: = 1")?

a rafional function unaltered in form by the permutations of G..
»A@ﬁlylng the permutation

{a, e, B, L 9,-}
B, ., 0, ... 0,
{(a member of &) to the last equation, it follows that
B=R(6,, ... 0,
Hence, when the groups G, G are simply isomorphie, the roots

e, B, ... x are expressible rationally in terms of those of the irreducible
resolvent.
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TmeoreM (2). When & is multiply isomorphic with &', the permu-
tations of & which leave 6,, 8,, ... 6, unaltered in order are 1, 5;, ...
forming a sub-group G, of . If 7" is a permutation of G not in Gy,

T8 (b, ... 8)=T" (61, .- 6,) = (6, - B,
BT (0, .. 6,) = 8y(ba, ... 6) = (Bss --- B,).

Hence the set of permutations 26, is identical with the set Gy 77,
though not necessarily in the same order: in fact, if 24 =nk, all the
permutations of & fall into the scheme

G, TGy, - T, G

Another frreducible resolvent A (A} =0, for which Gy, 75, b, ks Gte
defined in the same way as 61, S, Ay, & for ® (6), can often be choseh it
such a way that G, G have no common permutation except ideigﬁ%y. In
these circumstancesno two of the permutationsof & derangqthe séquence
(A1s Agy .o 2y) In the same way. For if AN\

8 Ay Agy e M) =B (M, Mgy o ) = (M, A3 Y. A,

then (S8 (Ar, Ay vee A= 87y Ay e Ay, gy en A,
showing 8,7%5; to be & member of Gy, 1.6 & =8, Thus every member
of Gy permutes the X's differently, whence, \%

by o= 0thihs 0}',@1}3; s nh.

In the case in which b,k = nh, By=if: and every member of the group
{7\ permutes the &'s differentlyn, Thened iFyar T jo¥e tad the set ten
is identical with 7} G, ox G B ot G Tj, i.e.

G= Gt TGt + TGy
L+ 85y Gyt e + 85, G

The permutation™Z}S; is in the set 736G, also in the set S;G..
Similarly 8,7} appears in each of these sets. The several members of
TG, appear in{the h, different sets 8;G5, and so for the members of
8,G,. Accordingly 7;8:, 8.7, can only appear in both when these
permutatiohs are identical. Hence, whenever (G, G have no common
permuttation except identity, and the product of their orders is the order
of @) the group G is the direct product of & and Gy,

\ Tt is also readily proved that a, B, ... x are expressible rationally in
terms of @s and N’s. The permntations of G which leave o unchanged
form & group G, of order A Applying these permutations to a general
rational fanction of &s and X's, there are & such functions different in
form and numerical value. A symmetric function of these helongs to
the group G, hence

grome Fe =8, By, v by, Ay e M)y
a rational funetion unaltered in form by the permutations of G,.
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In the application to the sextic ib is unnecessary to enter into
farther results (i) when Gh, G have no common permutation excopt
identity and & /&, <n#k, or (ii) when G, (#; have a common sub-gronp.

56. II. H.,and Tg. Sextic Resolvents of o Guintic.

if S=(afyd), T={alydf), U={aBeyld),
the permutations of Hyy are
SgmIm gr PRI, O\

These permutations leave unaltered a symmetric function of 4 \:\’
afl +ye+ 8f, oy+ 88 + Le, a5+{:'-y+ 3, o.(:+ o + By, (],E-{-B:s-};ﬁ
Ty form a resolvent it is better to adopt the invariant fpm:twn
b= {(a=BF(y=ef B—OF N
Ha—gP (- L AN
+le=3f (=) (e.«@*
+ (o= 07 (e~ BB 7
r(a- 9 (6 B2
whose conjugates are
Py = g (‘/‘1) b2 = DI b#‘mﬂﬂé&ﬁ?ﬁ):m%ﬂm b (o,ey) bs=1hs (“7’5)
The sextic resolvent satisfied by ithe six ¢’s, as caleulated by Mr C. W,
Giltham, iz &
@ (p) =+ 6y b° +(L;e2 + 8¢, ¢
+ (200" + 308nc, = 9¢.) ¢+ { Lhe, + 426, 6, — 6oy 65 + 1607} H°
+ (e + 2&{&; 0 — Bl oy + 2de 0 — 86 6 —Aew) §
+ (ug eF‘€6:2 ey— 2080+ 9t - Beysioy— Begop t &5 =0,
where ¢ ;, 65, Cyy are invarianta of the binary sextic form oIl (@ ~ ag).
Em: {0 and Ty @ () hag a rational lincar factor ¢ — ¢, the re-
mammg quintic factor being irreducible. Hy is simply isomorphic
\w;th the symmetric group {¢,$.ds ¢, s} and Theorem 1 of §55 applies.
The twenty permutations which Jeave o unaltered are ¥,", W™, where
V1= (ye330) = (1 dau by ba),
W= (3¢£8) = (drhaths bs).
Hence a=M (¢, $a, Bs, s, Pu), & rational metacyclic funstion, and the

remaining roots of the sextic are similarly expressed on applying the
permutation

(aﬁ E'YCS) = (‘i’l bq <f>4) (4’3 ‘f’u)-
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B57. JIL. G, T, Ghs and Gus,  Bicubic Sextics.
The ten-valued function @ (aey + 88¢) belongs to the group
Gry = (laey}, (38L}) {(ad) (B) (¥E)}-
Mr Githam has calculated the resolvent X (x) =0 satisfied by the more
convenient function
x=12{(a-8) (c—B) (-~ + (6= (= Oy-B)
#(@=-B) -0+ (a=Ole=B(r—9)
+(a-0(e=B)y—By+(a-B) (- Oy~ ~
When X (x) =0 Las a rational root xn=mé’ the fanctions
(a+ety~8—fF—0F (atevy— &— B —ixu, \\“\
{ey+yatae— Bt —E3— &8 %0 (aey — BBC)}‘XNO ”.}‘ \.
which belong to (r, take rational values, and the sextic IS\ ’
(@a® + 8ha* + Bdw +d ' —m (ca® +9f :y’)“,\
thus breaking into cubic factors in [Jm]. O

The permutations of Gy derange ¢, ¢s, diimter se, also by, by, by
inter se. So for this group ®(¢) is the product of irreducible cubic
factors. All the derangements of the si% &' are different: in fact G
is gimply isomorphic with {¢; ¢ CARL SR ¢} and Theorem 2 of §55
applies. The functions i qbraulibrar ,

&y rbebade L s Y OTBAN
being unaltered by the same{fix perm atations of G,
a Fiﬁ\(‘ﬁj hy + thyths + by ),
and, applying the Rehm\utations of {¢y o bs}, & 7. ele. are the same
rational functions.of.>
O\ b+ st by 4, k=12 8.

"The ro,&t;s;}f a Glg-sextic are thus expressible retionally in terms
of the xoots of two irreducible cubics. Such an pquation remains
irredui;ijble, however, when the field of its coefficients is emlarged by
g\djiﬁ,iction of one {or all) the roots of either of the cubics. An equa-

\tié]i' of this type is termed compound.

N

58. IV. G, Ga, Hoy Ty Tz Cubiquadratic Seartecs.
Nhe fifteen-valued function
=od +eff+yl
belongs to the last maximum sub-group

G ={(ad)} {(acdB)} {(eBySel)}
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When the 15-ic in ¥ has a rational root the sextic breaks up into the
quadratic factors
a{ei+ () 2+ fi (O} & + A (O) e + £ (O} 2P+ AE) 2 + (07},
6, &, ¢ being conjugate cubic irrationalities. Hence
a= B0, JH(®), 8=R(6,— Jh(6), ete.

For each of the five groups ¢; and ¢, are rational, the remaining
quartic factor of ® (¢) being irreducible. It is known that the roots of
such a quartic are given by £\

$ — do— s+ by = W& (8), ete, O\
where 8, ', 6," are the roots of the reducing cubie. The funst;ons

o and (G, — by — s + o) /A

)

are undisturbed by the same eight permutations of G@,\’I;{encé
Q:Eo[(‘ﬁl—‘i’z—‘}bs‘i“h)\/ﬁ], 4
8= Rn{( by + Po+ fy— 954) JA]\\etc,

shewing that the G-sexfic defincs another type of compound irration-
ality. ANV

89. V. G, I, O, Compos*zta ;S‘é’a’tzc Equations.

For these groups te+1¢be: %ﬂ&b{m qugolrents have each & rational
root. Hence the quadratic fac‘bors of IV and the cubic factors of il
both exist, and it follows fl:Qm the Euclidean ¢.c.M. process that

o=@ ym), 3= (8,~ ym)
The group reduges to H; when
NOTm -8y @ -8y (@ -0)
18 a rational xsqlxare, whenee a = 12, (9, ¢, ¢").
Finatlgt;}‘i'educes to the cyelical group C; when [#] is normal.
o)

O



CHAPTER V
SOLUTION BY STANDARD FORMS

60. As explained in Chap. 1 (Art. a7), the first step towards the
solution of an equation, after determining its Galoisian group, is 0
construct a series of (faloisian auxiliaries. If the degree of eaCh
auxiliary is prime, the equation is solvable by radicals, because~gack
auxiliary is cyclical ; and it can be proved that in no othet cise is
the original equation solvable by radicals. The group of each
auxiliary is simple; hence the only outstanding diﬂiéulty is the
discussion of mon-cyclical equations, of which the Geloisian groups
are gimple. The reason why the general equatigrqqu order n cannot be
solved algebraically when n>4 is that the growptef even permutations
of » things is simple* cxcept when =4 {The cases n=2and n=3
are also exceptional, because in the first eadethere are no even permuta-
tions, and in the second they form & gyelical group of order 3.

MThe most effective way of a‘tﬁ{@kﬁ%@ﬂléﬁmﬂm'@fﬁmich the group
iz non-eyclical and simple is to™ransform it, if possible, inte another
equation of standard forrn, for which the solution is known or has been
tabulated. The spiritof\the method may be illustrated, in the first
place, by considering, me cubic equation

@ Praerb=0
where o, b dengteireal positive quantities. If we pub
:"“\.:’ z=hy, Bk =4q, ¢ = 4b/F
the equdtion becomes

RN 4+ Byte=0;3
\ . - - -
aﬂ!{} by properly choosing the sign of &, we can make this
df +8y—-c=0,

with ¢>0. If the coefficient of g is —3, and ¢ is & proper fraction, we
may find a real quantisy @ such that cos 30 =¢, and then

gy =cos ¢, cos (9 +g33), 08 (6—%%);

* Burnside, LTheary of Groups, P 153.
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while if ¢> 1 we find @ such that eosh 38 =¢, and then
y=rcosh &, cosh (9 + 2%1) , cosh (9 dmt

On the other hand, if the coefficient of # iz + 3, we may find 8 such
that sinh 36 =¢, and then

y=mnh 8, sinh (6 + 2; ), ainh (9 + ??'

Thus in every case the equation i3 solved with the help of a table of
¢rigonometrical or hyperbelic funetions.

6L.  Several methods of this kind, all indecd ultimately eqm(ra}e}lt
have been applied to the general quintic. One of these, the (eolution
by means of the icosahedral irrationality, will now be giver™n outline ;
for further details the reader is referred to Klein’s leé’uures on the
icosahedron, and fo the treatise on modular functié’ﬁ} by Klein and
Fricke,

A point on a sphere may be determined by ity north polar distance
6 and longitude ¢, If we put N N\

[/}
Zim=tan— (cus ¢ £D81n ),

21, %, may be talen as homogeneoug eoordmates delining the position of
the point.  Suppose, AHWt ﬁ%‘f)ﬁé}émé%u’lar icosahedron inscribed
in the sphere, with one vertgx at the point #=0 and another on the
great circle $=0. If we yiib
iz;-g (7' + Fla"sf — 2%
the roots of f=0 chrrespond to the twelve vertlces of the solid. The
binary form f he® two covariants
H= zK + z;’”) + 228 (202" — 2"%) — 404 2,100,
T = @3 2.5 + 522 (2,725 — 2,5 *) — 10005 (£,22,° + 27%,%),
and the'%ree forms are connected by the identity
- %+ 7= 1728 75,
"’Ilhe ‘roots of H =0 correspond to the centres of the equilateral triangles
\m’m which the surface of the sphere is divided by the great circle arcs
into which the edges of the jcosahedron are projected from the centre of -
the sphore ; and the roots of 7'= 0 correspond to the middle points of
the sides of thege triangles. H is the Hessian of £, and T is the
Jacobian of I and 7,
Let 4B be a side of any one of the 20 triangles, and C.D any other
of the remaining 29 sides. Then there is a definite rotation about a
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dismeter of the sphere which brings AB into coincidence with CD.
Similarly there is a definite rotation which brings A B into coincidence
with DO.  We thus obtain 58 rotations, each of which, applied to the
icosahedron, brings it into a new position in which it occupies the same
space as before. Besides these, there is the rotation about the diameter
bisecting A B, which brings 4 B into coincidence with BA. Altogether,
there are sixty different positions of the icosahedron, and if we include,
as the identical operation, that of leaving the icosahedron alone, we
have a group of 60 rotations which form a group. Each rotation may

be associated with a linear substitution applied to 2, and 2. If we put, 4
2mifs = €, N
) ¢(\A
sz, 20 ={€2, Eu), 17, %) = (%% ' z—l—%i‘)ﬁ '} ’
then F=1, #=1,
and s, £ generate a group of 120 homogeneous substitlliﬁdgs;'with which
the group of rotations is hemihedrically isomotghid; because if
{az + B2y, y% + 32;) 18 any one of the substitui;i@:s,
£ (0t + fra, v+ dea) = (o~ Biag Dy — B)
which corresponds to the same rotation. Byery one of the homogeneous
substitutions leaves /, H, T ahsolutely uptiltéred, but produces a certain
permutation among their roots. \\

Consider, now, the funct-ion’yd%ﬁbfﬂmﬁvid@t‘ghmlgaﬁ the rtational
factor 2\ Ny

'§51=512+3925

and if we apply to this gie‘substitution # we find that 7 (&) ==&
Now the roots of ¢ ~Qvare the ends of a diameter of the sphere:
hence # must correfpond to a rotation through an angle = about &
perpendicular djanieter, the extremities of which are unaltered by £, so

that they aresgiven by
g S (e+)zm+m_%

\\ PASTERNS P
or W% ¢2:zlﬂ—2(e+e‘)z1zs—zf:0.
o (If we put =2 €+ mn =

St ds easily proved that the roots of ¢,=0 are at the ends of a dismeter
perpendicular to each of the two others: hence, writing
v = Gubady =0+ 2502 = bar'ed — Balwl —2m ¥ 2
7 is & factor of 7 and the roots of 7=0 are the vertices of & regnlar
octahedron. Since this has 12 edges, there are 24 rotations which
bring it into coincidence with itself; of these 12 belong to the
jcosahedral group, and form a factor of it
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By applying all the jcosshedral substitutions to v we obtain five
different sextics 7y (=7), 72, 75, 74, 75 the product of which is 7% If,
wow, we form the equation

frer)ir—m) ... (r—7) =T +pri+ . A =0
the coefficients are binary forms which are invariable for the icosahedral
group and of degrees 6, 12, 18, 24, 30 respectively. Each coefficient
equated to zero must give an invariant set of points on the sphere ; and
since there are no sets of 6 ox 18 points, and the only sets of 12 and 24
are given by f=0, f*=0, the equation must reduce to the form
Praff bt —T=0 O\

where @, b are numerical. By a eomparison of coefficients it ds, fotnd
that @ =~ 10, 5 =45, so that finally \ 2

P10/ + 45 fir - T=0, :

Putting 2 f=¢ \
we find that » satisfies the equation O

y(r* —10r + 45) = Tﬂf{«‘;} ’

The Hessian of = is given by NO

k=— (2P +2)+ {2/ —m2 )~ 7 (zfiz} ¥ 208 — 1 (2527 — 5% ;
like = this has five conjugate valgésdand is invariant for the same
group as T www.dbl'aulizﬁfa;'y_org_in

Suppose, now, that [, m are’&rf)it-ra,ry numerical quantities, and let

.z”x\y=g§ +ﬂ}“;;—i:r——-'c ........................ (1).
&
Thig iz a function of\’che ratio #/% which assumes only five values
when the icosahedial substitutions are applied to it. The invariant
quintic of which it is a root can be found by a process similar to that

by which 'tlié,\e“quation satisfied by = was constructed. The result is,
that if we-write

N

NN

" H ™ ,
Nt FF=h EThE 1728 —g }
V ) aj =80+ I*m + Lﬁmi’ -
J1 S (2)
Bt 1808 + Im® | 27m*

W=—1+ ; + 7

1 A

G=1— 100%m®  4blmt + m°

J1 i

y satisfies the eguation
P+ 50 +e=0 e icriirranienenis (3).
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62. Conversely, suppose a quintic given in the form (3} : if we can
find, in terms of &, b, ¢, quantities I, m, j, 7, such that 7 + /1 =1728, and
the last three of equations (2) are satisfied, the roots of the given quintic
will be expressible as rational functions of any one root of the normal
equation

I —475=0.
By combining equations (2) we find
Albrey=mla (4},
) )
j (&; - “"”—b) = (- g’ﬁ)s ............................. 5
J1 J1 AN
Ll 83)) 2160%m  9im®  216m° 'S )N
B B O, . {1}
J ( # Hi Wil Jr T ()
From {2) and (6), by squaring, D
- AN
Ta’f" = 172805 + 4328°m + 27 (1 + %‘2) I*m? \%
1
4390 , o /2 TN . JOUS. 21600 2Taf
+—.—l°‘1:91;3+21'(—.+.—)a’!2 f s g
A Iy ‘ﬁ\ i P
2 £, b
540 (L_’q: 80 ) = /1% + 4328m + (18 + %) B2 + 2320 s
m o5 H
/81 2.216%%, ,  18.216 27.1728
+ (31 +- 'ﬁgf\!’w)(iﬂpfaﬁhblﬁry;#gm_ A ',

On subtracting the lagtleguation from the one before, we find that
(1798 —j,) is a factor of (th right-hand side ; since j+7, = 1728, this
cancels with the fagtofjvon the left hand, and we thus obtain

O o I + 8607 . Smy?

safre—a (557) - (0-%)-
Compggg'i\ﬂ}fhis with (5), we infer that

\\ : 27k~ % (Jo+8bY=lc —

b
™« .l
_and\by eliminating m(j, from this and (4) it ig found that ! satisfies
the equation

(@ + abe—b%) 1= (110% — ac® + 2b%) | - {274%c — 644°5° + be) =0

.... {(8)

If D is the diseriminant of (3), that of (8) is @*D/5" so that { is
rational in the field (a, &, ¢, /D, /5). The adjunction of /D rednees
the group of the quintic from the symmetrical group to the alternate
group of order 60; the quentity /5 is what is called an auxiliary
irrationality, and does not affect the group.

M,

@
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Having determined 7, equations (4) and (5) givo

. {al®~3bl~ 3c)
I a5~ Kao =Gy = bay (9),

& tational function of 7; and since

b P
(a=+’i;?—)m=m'—7—2;ﬁ - 8%,
1

we find, after substituting for j and »*fj; from (4) and (9), that

atld — 10abl® — (18ac — 450%) I* + 18bel - 2762

- m= (ao— 51— be A%
Thus 7 can also be expressed as a rational function of Z: of.cm;rse, the
above expression, like that obtained for j, can be transforigd in various
ways by making use of the equation satisfied by £, ¢ (4,

To make this method actually useful for solvingnnmerical guintics,
we require a table giving the roots of the icosa.Qedral equation

Y

Ha_-jff':o..’\xl‘
for different numerieal values of j. Whon D is positive, 4, m, j are

real; but when D is negative, j i3, in general complex, so that 2

complete table wonld, bays to ipclide tmaginary values of /.

Q"

63. When a =0, the fotegoing results require modification, because
in this case Ib+c=0pand the formule (9) and (10) become in-
determinate. Starfidg “afresh with equnations (2), after putting e=0,
it iz found thatAf £ is a determinate root of

4 B4 @E—BAB =0 oo (11)
we may puby
:“\". _
’\\.. bl=—c¢
A\ b'm="128e— c*¢ -
\ bsj=bs(172855+6364)_02§34+Slb5)5 '( H

B = — 830 + ¢ (¢* + B1BT) &

and the formula (1), combined with H® —j#° =0, will give the roots of
the equation

¥+ 8by+e=0.

Another spocial case that requires examination is when ¢ £ 0, and
gquation (8) of last article is satisfied by putting

(e — 8% 1= be.
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Thiz leads to 3uc=43?, whence also, supposing that ¢ does not
vanish, /= 4bfa = 3¢/b. It is found that the equations (2) of Art. 54
reduce to

J+a=1728,
2up0 B4btm
BT T
w167
.?'1 30 "
The elimination of § and j, leads to N\
Sadmt + 2%abim + 3. 2 (320° — 270"} &8 =0, A
the roots of which are \\\
_ 966 320(27a" - 320)) A
a’ 9 A0
and the corresponding values of j are . :\\ 4

i,bq (27aA— 1615, N
N,

Now, if we take =0 the auxiliary equa{mn is #=0. Referring
back to cquation (1), Art. 54, we seedthat this must be rejected,
because it introduces a zero factory m‘bb the denominator of the
expression for 7. Thus the solutmn S

4? 1 Wﬁiﬂm‘auﬁﬂfﬁﬁfﬁ Hrg.in

0,

TuH TS AT ?
with 276 : J9RE (274 - 1667 f1= 0.
Thm may be sim ad by putting
, B@ 165°
X 20t
O ZE@E{ L o4l ii}
thus \x\ Y= f 1+ 24(1 - 2n) 7l
with -2 #an-1) =0
If &= 2p"’ b = 3p*, this solution fails: but the equation is then
: N/ # + L0p%y% + 1apiy + 6p° =05
\'that is to say,

(y+pP (v —8py +6p°) =0,
the roots of which are chvious,
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